Characteristics of Thermoresponsive Biohydrogels †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hydrogel Materials
2.3. FT-IR Infrared Spectroscopy Analysis
2.4. Analysis of Soprtion Capacity
- α—swelling ratio, g/g;
- mt—mass of swollen sample after time “t”, g;
- m0—mass of dry sample (before the study), g.
2.5. Microscopic Observations and Roughness Profile
3. Result and Discussion
3.1. FT-IR Infrared Spectroscopy Analysis
3.2. Analysis of Soprtion Capacity
3.3. Microscopic Observations and Roughness Profile
4. Conclusions
- The chosen photopolymerization method allows us to obtain hydrogel materials modified with fluorescent dye;
- As the amount of crosslinking agent increases, hydrogel materials exhibit reduced sorption properties as a result of the increasing crosslinking density of the polymer matrix;
- The amount of crosslinking agent also significantly affects the surface morphology and roughness of the resulting materials; with the increase in PEGDA, an increase in the value of the roughness parameters was noted;
- Determination of the correlation between the amount of crosslinking agent and the properties of hydrogel materials allows us to obtain materials with the properties desired for their subsequent use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Majcher, M.J.; Hoare, T. Applications of Hydrogels BT—Functional Biopolymers. In Functional Biopolymers; Jafar Mazumder, M.A., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 453–490. ISBN 978-3-319-95990-0. [Google Scholar]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current Hydrogel Advances in Physicochemical and Biological Response-Driven Biomedical Application Diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Blevins, W.E.; Park, H.; Park, K. Gastric Retention Properties of Superporous Hydrogel Composites. J. Control. Release 2000, 64, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Şen, M.; Uzun, C.; Güven, O. Controlled Release of Terbinafine Hydrochloride from PH Sensitive Poly(Acrylamide/Maleic Acid) Hydrogels. Int. J. Pharm. 2000, 203, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.; Saha, N. PVP-Based Hydrogels: Synthesis, Properties and Applications. In Hydrogels: Synthesis, Characterization and Applications; Nova Science Publishers: New York, NY, USA, 2012; pp. 227–252. [Google Scholar]
- Chamkouri, H. A Review of Hydrogels, Their Properties and Applications in Medicine. Am. J. Biomed. Sci. Res. 2021, 11, 485–493. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, W.; Jin, C. Protocol Efficiently Measuring the Swelling Rate of Hydrogels. MethodsX 2020, 7, 100779. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, D.; Gong, C.; Chang, C. Bioinspired Shape Memory Hydrogel Artificial Muscles Driven by Solvents. ACS Nano 2021, 15, 13712–13720. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Kim, J. Hydrogel-Based Artificial Muscles: Overview and Recent Progress. Adv. Intell. Syst. 2020, 2, 1900135. [Google Scholar] [CrossRef]
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable Cellulose-Based Hydrogels: Design and Applications. Materials 2009, 2, 353–373. [Google Scholar] [CrossRef]
- Salgado-Delgado, A.; Hernández-Cocoletzi, H.; Rubio-Rosas, E.; Escobedo Morales, A.; Chigo, E.; Olarte, A.; Salgado-Delgado, R.; Castaño, V. Simulated Body Fluid Nucleation of Poly(Vinyl Alcohol)/Nanohydroxyapatite Hydrogels. Polimery 2019, 64, 487–492. [Google Scholar] [CrossRef]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.; Sharifi, S.; Ziaee, F. Monitoring of Polyethylene Glycol-Diacrylate-Based Hydrogel Formation by Real Time NMR Spectroscopy. Iran. Polym. J. 2007, 16, 13–20. [Google Scholar]
- Roy, P.; Swami, V.; Kumar, D.; Rajagopal, C. Removal of Toxic Metals Using Superabsorbent Polyelectrolytic Hydrogels. J. Appl. Polym. Sci. 2011, 122, 2415–2423. [Google Scholar] [CrossRef]
10% PEG, mL | 10% PVA, mL | Photoinitiator, mL | Fluorescein, mL | PEGDA, mL |
---|---|---|---|---|
5 | 5 | 0.05 | 1 | 2.0 |
2.5 | ||||
3.0 | ||||
3.5 | ||||
4.0 |
Roughness Parameter (um) | 2.0 mL PEGDA | 2.5 mL PEGDA | 3.0 mL PEGDA | 3.5 mL PEGDA | 4.0 mL PEGDA |
---|---|---|---|---|---|
Ra | 0.92 | 3.50 | 7.79 | 7.76 | 17.04 |
Rz | 3.79 | 21.31 | 57.4 | 30.87 | 69.09 |
Rq | 1.09 | 4.51 | 10.14 | 8.96 | 19.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyliszczak, B.; Bańkosz, M.; Grzela, K.; Rzepka, K.; Iglar, M.; Piątkowski, J.; Sala, K.; Woźniak, A.; Wanat, D.; Kędzierska, M. Characteristics of Thermoresponsive Biohydrogels. Eng. Proc. 2023, 48, 1. https://doi.org/10.3390/CSAC2023-14885
Tyliszczak B, Bańkosz M, Grzela K, Rzepka K, Iglar M, Piątkowski J, Sala K, Woźniak A, Wanat D, Kędzierska M. Characteristics of Thermoresponsive Biohydrogels. Engineering Proceedings. 2023; 48(1):1. https://doi.org/10.3390/CSAC2023-14885
Chicago/Turabian StyleTyliszczak, Bożena, Magdalena Bańkosz, Klaudyna Grzela, Korneliusz Rzepka, Monika Iglar, Jakub Piątkowski, Katarzyna Sala, Aniela Woźniak, Dominika Wanat, and Magdalena Kędzierska. 2023. "Characteristics of Thermoresponsive Biohydrogels" Engineering Proceedings 48, no. 1: 1. https://doi.org/10.3390/CSAC2023-14885
APA StyleTyliszczak, B., Bańkosz, M., Grzela, K., Rzepka, K., Iglar, M., Piątkowski, J., Sala, K., Woźniak, A., Wanat, D., & Kędzierska, M. (2023). Characteristics of Thermoresponsive Biohydrogels. Engineering Proceedings, 48(1), 1. https://doi.org/10.3390/CSAC2023-14885