Comparison of Different Formats for Immunochromatographic Detection of Surfactant Nonylphenol †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Immunochromatographic (ICA) Components
2.3. Immunochromatographic Procedure
3. Results and Discussion
3.1. Characterization of Au Nanoparticles and Testing of Antiserum
3.2. Traditional and Inverted Schemes of ICA for NP Determination
3.3. Optimization of ICA in Traditional and Inverted Schemes
3.4. Comparison of Traditional and Inverted ICA Schemes for NPh
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef]
- Sangeetha, S.; Vimalkumar, K.; Loganathan, B.G. Environmental contamination and human exposure to select endocrine-disrupting chemicals: A review. Sustain. Chem. 2021, 2, 343–380. [Google Scholar] [CrossRef]
- Bhandari, G.; Bagheri, A.R.; Bhatt, P.; Bilal, M. Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol, from the aqueous environment. Chemosphere 2021, 275, 130013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.-S.; Wang, X.; Yuan, J.-P.; Zhang, L.-L. Solid-phase extraction of bisphenol A, nonylphenol and 4-octylphenol from environmental water samples using microporous bamboo charcoal, and their determination by HPLC. Microchim. Acta 2009, 165, 443–447. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Stoffella, P.J.; Wilson, P.C. Analysis of bisphenol A, nonylphenol, and natural estrogens in vegetables and fruits using gas chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2013, 61, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.-K.; Shu, T.-Y.; Ponnusamy, V.K.; Jen, J.-F. A novel fatty-acid-based in-tube dispersive liquid–liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography–ultraviolet detection. Anal. Chim. Acta 2015, 854, 70–77. [Google Scholar] [CrossRef]
- Li, C.; Jin, F.; Snyder, S.A. Recent advancements and future trends in analysis of nonylphenol ethoxylates and their degradation product nonylphenol in food and environment. TrAC Trends Anal. Chem. 2018, 107, 78–90. [Google Scholar] [CrossRef]
- Yu, M.; Wu, L.; Miao, J.; Wei, W.; Liu, A.; Liu, S. Titanium dioxide and polypyrrole molecularly imprinted polymer nanocomposites based electrochemical sensor for highly selective detection of p-nonylphenol. Anal. Chim. Acta 2019, 1080, 84–94. [Google Scholar] [CrossRef]
- Gomes, N.O.; Mendonça, C.D.; Machado, S.A.S.; Oliveira, O.N.; Raymundo-Pereira, P.A. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Microchim. Acta 2021, 188, 359. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, N.; Cao, Q.; Zhang, L.; Wang, S.; Yao, W.; Chao, F. Immunochip for the detection of five kinds of chemicals: Atrazine, nonylphenol, 17-beta estradiol, paraverine and chloramphenicol. Biosens. Bioelectron. 2009, 24, 1445–1450. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Uskova, N.A.; Andresyuk, A.N.; Franek, M.; Elliott, C.T. Biacore biosensor immunoassay for 4-nonylphenols: Assay optimization and applicability for shellfish analysis. Chemosphere 2004, 57, 975–985. [Google Scholar] [CrossRef]
- Dostálek, J.; Přibyl, J.; Homola, J.; Skládal, P. Multichannel SPR biosensor for detection of endocrine-disrupting compounds. Anal. Bioanal. Chem. 2007, 389, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-R.; Kim, S.-H.; Kim, D.; Cho, S.W.; Son, A.; Yoon, M.-Y. Detection of nonylphenol with a gold-nanoparticle-based small-molecule sensing system using an ssDNA aptamer. Int. J. Mol. Sci. 2020, 21, 208. [Google Scholar] [CrossRef]
- Samsonova, J.V.; Rubtsova, M.Y.; Franek, M. Determination of 4-n-nonylphenol in water by enzyme immunoassay. Anal. Bioanal. Chem. 2003, 375, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Matsui, K.; Kawaji, I.; Utsumi, Y.; Ukita, Y.; Asano, T.; Takeo, M.; Kato, D.-I.; Negoro, S. Enzyme-linked immunosorbent assay for nonylphenol using antibody-bound microfluid filters in vertical fluidic operation. J. Biosci. Bioeng. 2007, 104, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Yakovleva, J.N.; Lobanova, A.Y.; Shutaleva, E.A.; Kourkina, M.A.; Mart’ianov, A.A.; Zherdev, A.V.; Dzantiev, B.B.; Eremin, S.A. Express detection of nonylphenol in water samples by fluorescence polarization immunoassay. Anal. Bioanal. Chem. 2004, 378, 634–641. [Google Scholar] [CrossRef]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Adeodato Vieira, M.G. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Mart’ianov, A.A.; Zherdev, A.V.; Eremin, S.A.; Dzantiev, B.B. Preparation of antibodies and development of enzyme-linked immunosorbent assay for nonylphenol. Int. J. Environ. Anal. Chem. 2004, 84, 965–978. [Google Scholar] [CrossRef]
- Berlina, A.N.; Ragozina, M.Y.; Komova, N.S.; Serebrennikova, K.V.; Zherdev, A.V.; Dzantiev, B.B. Comparison of Au, Au-Pt, and Au-Ag nanoparticles as markers for immunochromatographic determination of nonylphenol. Chim. Techno Acta 2022, 10, 202310103. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Barshevskaya, L.V.; Zherdev, A.V.; Dzantiev, B.B. Enhanced lateral flow immunoassay with double competition and two kinds of nanoparticles conjugates for control of insecticide imidacloprid in honey. Biosensors 2023, 13, 525. [Google Scholar] [CrossRef] [PubMed]
NPh Spiked (µg/mL) | NPh Measured (µg/mL) | Recovery (%) |
---|---|---|
0.5 | 0.39 ± 0.04 | 78 |
1 | 0.87 ± 0.11 | 87 |
3 | 3.41 ± 0.07 | 113.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlina, A.N.; Komova, N.S.; Serebrennikova, K.V.; Zherdev, A.V.; Dzantiev, B.B. Comparison of Different Formats for Immunochromatographic Detection of Surfactant Nonylphenol. Eng. Proc. 2023, 48, 9. https://doi.org/10.3390/CSAC2023-14919
Berlina AN, Komova NS, Serebrennikova KV, Zherdev AV, Dzantiev BB. Comparison of Different Formats for Immunochromatographic Detection of Surfactant Nonylphenol. Engineering Proceedings. 2023; 48(1):9. https://doi.org/10.3390/CSAC2023-14919
Chicago/Turabian StyleBerlina, Anna N., Nadezhda S. Komova, Kseniya V. Serebrennikova, Anatoly V. Zherdev, and Boris B. Dzantiev. 2023. "Comparison of Different Formats for Immunochromatographic Detection of Surfactant Nonylphenol" Engineering Proceedings 48, no. 1: 9. https://doi.org/10.3390/CSAC2023-14919
APA StyleBerlina, A. N., Komova, N. S., Serebrennikova, K. V., Zherdev, A. V., & Dzantiev, B. B. (2023). Comparison of Different Formats for Immunochromatographic Detection of Surfactant Nonylphenol. Engineering Proceedings, 48(1), 9. https://doi.org/10.3390/CSAC2023-14919