Automatic Hierarchical Time-Series Forecasting Using Gaussian Processes †
Abstract
:1. Introduction
- A new algorithm for hierarchical time-series forecasting that does not require any type of reconciliation;
- The definition of a flexible structure of hierarchical additive GPs. Additive GPs are used in statistical analysis [6], whereas we propose a formulation to adapt it to automatic hierarchical time-series forecasting;
- The combination of additive GPs with a hierarchical piece-wise linear function to model, respectively, the stationary and non-stationary components of hierarchical time-series;
- An automatic method that does not require expert intervention to be fitted to new data.
2. Related Work
2.1. Time-Series Forecasting
2.2. Hierarchical and Grouped Time-Series
2.3. Gaussian Process
2.3.1. Kernels
2.3.2. Predictions
2.4. Variational Inference
3. Hierarchical Model
3.1. Hierarchical Structure
3.2. Gaussian Processes
3.3. Trend Model
4. Results
5. Conclusions and Future Work
Funding
Data Availability Statement
References
- Hyndman, R.J.; Khandakar, Y. Automatic time-series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Wickramasuriya, S.L.; Athanasopoulos, G.; Hyndman, R.J. Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization. J. Am. Stat. Assoc. 2019, 114, 804–819. [Google Scholar] [CrossRef]
- Spiliotis, E.; Abolghasemi, M.; Hyndman, R.J.; Petropoulos, F.; Assimakopoulos, V. Hierarchical forecast reconciliation with machine learning. arXiv 2020, arXiv:2006.02043. [Google Scholar]
- Novak, J.; McGarvie, S.; Garcia, B.E. A Bayesian model for forecasting hierarchically structured time series. arXiv 2017, arXiv:1711.04738. [Google Scholar]
- Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D.M. Automatic Differentiation Variational Inference. J. Mach. Learn. Res. 2017, 18, 1–45. [Google Scholar]
- Cheng, L.; Ramchandran, S.; Vatanen, T.; Lietzén, N.; Lahesmaa, R.; Vehtari, A.; Lähdesmäki, H. An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nat. Commun. 2019, 10, 1798. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2021. [Google Scholar]
- Livera, A.M.D.; Hyndman, R.J.; Snyder, R.D. Forecasting time-series With Complex Seasonal Patterns Using Exponential Smoothing. J. Am. Stat. Assoc. 2011, 106, 1513–1527. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Corani, G.; Benavoli, A.; Augusto, J.; Zaffalon, M. Automatic Forecasting using Gaussian Processes. arXiv 2020, arXiv:2009.08102. [Google Scholar]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for time-series Forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Smyl, S. A hybrid method of exponential smoothing and recurrent neural networks for time-series forecasting. Int. J. Forecast. 2019, 36, 75–85. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Ahmed, R.A.; Athanasopoulos, G.; Shang, H.L. Optimal combination forecasts for hierarchical time-series. Comput. Stat. Data Anal. 2011, 55, 2579–2589. [Google Scholar] [CrossRef] [Green Version]
- Athanasopoulos, G.; Ahmed, R.A.; Hyndman, R.J. Hierarchical forecasts for Australian domestic tourism. Int. J. Forecast. 2009, 25, 146–166. [Google Scholar] [CrossRef] [Green Version]
- Chapados, N. Effective Bayesian Modeling of Groups of Related Count time-series. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning); The MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Quiñonero-Candela, J.; Rasmussen, C.E. A Unifying View of Sparse Approximate Gaussian Process Regression. J. Mach. Learn. Res. 2005, 6, 1939–1959. [Google Scholar]
- Ong, V.M.H.; Nott, D.J.; Smith, M.S. Gaussian variational approximation with a factor covariance structure. arXiv 2017, arXiv:1701.03208. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Wang, X.; Broderick, T.; Dunson, D.B. Boosting variational inference. arXiv 2016, arXiv:1611.05559. [Google Scholar]
Algorithm | Bottom | Total | State | Gender | Legal | All |
---|---|---|---|---|---|---|
HPLGPs | 2.09 | 0.244 | 1.628 | 0.518 | 2.682 | 1.885 |
BU-GPs | 2.319 | 1.626 | 1.638 | 1.396 | 2.813 | 2.242 |
MinT | 2.06 | 0.895 | 1.698 | 0.907 | 1.84 | 1.96 |
Algorithm | Bottom | Total | State | Zone | Region | Purpose | All |
---|---|---|---|---|---|---|---|
HPLGPs | 1.082 | 0.779 | 1.128 | 1.014 | 0.981 | 0.981 | 1.018 |
BU-GPs | 1.211 | 1.271 | 1.312 | 1.211 | 1.122 | 1.121 | 1.196 |
MinT | 0.906 | 1.27 | 1.07 | 0.893 | 0.895 | 1.04 | 0.897 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque, L.; Torgo, L.; Soares, C. Automatic Hierarchical Time-Series Forecasting Using Gaussian Processes. Eng. Proc. 2021, 5, 49. https://doi.org/10.3390/engproc2021005049
Roque L, Torgo L, Soares C. Automatic Hierarchical Time-Series Forecasting Using Gaussian Processes. Engineering Proceedings. 2021; 5(1):49. https://doi.org/10.3390/engproc2021005049
Chicago/Turabian StyleRoque, Luis, Luis Torgo, and Carlos Soares. 2021. "Automatic Hierarchical Time-Series Forecasting Using Gaussian Processes" Engineering Proceedings 5, no. 1: 49. https://doi.org/10.3390/engproc2021005049
APA StyleRoque, L., Torgo, L., & Soares, C. (2021). Automatic Hierarchical Time-Series Forecasting Using Gaussian Processes. Engineering Proceedings, 5(1), 49. https://doi.org/10.3390/engproc2021005049