Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duis, K.; Coors, A. Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.W.; Lee, J.Y.; Lee, M.; Lee, G.S.; Jeong, C.D. Role of soil microplastic pollution in climate change. Sci. Total. Environ. 2023, 887, 164112. [Google Scholar] [CrossRef] [PubMed]
- Dike, S.; Apte, S. Impact of microplastic pollution in terrestrial ecosystem on index and engineering properties of sandy soil: An experimental investigation. Sci. Total. Environ. 2023, 887, 164049. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, V.O.; Melnikova, O.G.; Ponomaryov, K.S.; Samokhvalova, A.I. Microplastics in bottom sediments of rivers in urbanized areas. In Proceedings of the International Scientific and Practical Internet Conference “Ecologically Sustainable Development of Urban Systems: Challenges and Solutions” KhNUUE named after O. M. Beketova, Kharkiv, Ukraine, 2–3 November 2021; Available online: http://eprints.kname.edu.ua/60576/1/C%D0%B1%D0%BE%D1%80%D0%BD%D0%B8%D0%BA21-134-136.pdf (accessed on 26 June 2023). (In Ukrainian).
- Fortuna, M.; Borysovska, O. Assessment of water pollution by microplastic. Collect. Sci. Work. Natl. Min. Univ. 2021, 65, 195–206. Available online: http://znp.nmu.org.ua/index.php/en/archives/37-65en/441-65en18 (accessed on 26 June 2023). (In Ukrainian). [CrossRef]
- Kublik, S.; Gschwendtner, S.; Magritsch, T.; Radl, V.; Rillig, M.C.; Schloter, M. Microplastics in soil induce a new microbial habitat, with consequences for bulk soil microbiomes. Front. Environ. Sci. 2022, 10, 989267. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Wang, X.; Cheng, T.; Fu, K.; Qin, Z.; Feng, K. Biofilm Structural and Functional Features on Microplastic Surfaces in Greenhouse Agricultural Soil. Sustainability 2022, 14, 7024. [Google Scholar] [CrossRef]
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Oberbeckmann, S.; Fischer, D.; Kreikemeyer, B. Paint particles are distinct and variable substrate for marine bacteria. Mar. Pollut. Bull. 2019, 146, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Tkachuk, N.; Zelena, L.; Lukash, O.; Mazur, P. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. EQ 2021, 32, 119–129. [Google Scholar] [CrossRef]
- Tkachuk, N.; Zelena, L. The Impact of Bacteria of the Genus Bacillus upon the Biodamage/Biodegradation of Some Metals and Extensively Used Petroleum-Based Plastics. Corros. Mater. Degrad. 2021, 2, 531–553. [Google Scholar] [CrossRef]
- Yao, Y.; Rao, S.; Habimana, O. Active Microbiome Structure and Functional Analyses of Freshwater Benthic Biofilm Samples Influenced by RNA Extraction Methods. Front. Microbiol. 2021, 12, 588025. [Google Scholar] [CrossRef] [PubMed]
- Yeromina, A.K.; Goncharova, N.G.; Sokolovska, I.A. Ecology of Microorganisms: Teaching. Manual for Students of the 3rd Year of the Medical Faculty, Specialty “Laboratory diagnostics”; ZSMU: Zaporizhzhia, Ukraine, 2013; 75p, Available online: http://library.zsmu.edu.ua/cgi/irbis64r_14/fulltext/Rejting/Er'ominaAK13_Ekolo_m.pdf (accessed on 26 June 2023). (In Ukrainian)
- Furzikova, T.M.; Serhiychuk, M.G.; Vlasenko, V.V.; Shvets, Y.u.V.; Pozur, V.K. Microbiology. Practicum; Phytosocial Center: Kyiv, Ukraine, 2006; 210p. (In Ukrainian) [Google Scholar]
- Tkachuk, N.; Zelena, L. Bacterial sulfidogenic community from the surface of technogenic materials in vitro: Composition and biofilm formation. Biofouling 2023, 39, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Abdulina, D.R.; Asaulenko, L.G.; Purish, L.M. Diversity of corrosive aggressive bacteria in soils of different biotopes. Stud. Biol. 2011, 5, 11–16. [Google Scholar] [CrossRef]
- Rogers, J.; Dowsett, A.B.; Dennis, P.J.; Lee, J.V.; Keevil, C.W. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl. Environ. Microbiol. 1994, 60, 1842–1851. [Google Scholar] [CrossRef]
- Parrish, K.; Fahrenfeld, N.L. Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environ. Sci. Water Res. Technol. 2019, 5, 495–505. [Google Scholar] [CrossRef]
- Harrison, J.P.; Schratzberger, M.; Sapp, M.; Osborn, A.M. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 2014, 14, 232. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Result | Limit Permissible Concentration |
---|---|---|
Nitrate nitrogen | <4.0 mg/kg | 130.0 mg/kg |
Ammonium nitrogen | <1.0 mg/kg | Not normalized |
pH | 7.05 units pH | Not normalized |
Sulfates | 9.4 mg/kg | Not normalized |
Chlorides | 500.0 mmol/100 g | Not normalized |
Sulfur | <2.0 mg/kg | 160.0 mg/kg |
Humidity | 4.3% | Not normalized |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tkachuk, N.; Zelena, L. Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Eng. Proc. 2023, 56, 13. https://doi.org/10.3390/ASEC2023-15350
Tkachuk N, Zelena L. Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Engineering Proceedings. 2023; 56(1):13. https://doi.org/10.3390/ASEC2023-15350
Chicago/Turabian StyleTkachuk, Nataliia, and Liubov Zelena. 2023. "Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil" Engineering Proceedings 56, no. 1: 13. https://doi.org/10.3390/ASEC2023-15350
APA StyleTkachuk, N., & Zelena, L. (2023). Some Microbiological Characteristics of the Biofilm on the Surface of Pre-Production Pellets of Polypropylene Microplastics after Short Exposure in Soil. Engineering Proceedings, 56(1), 13. https://doi.org/10.3390/ASEC2023-15350