Sulfate Radical Advanced Oxidation Processes: Activation Methods and Application to Industrial Wastewater Treatment †
Abstract
:1. Introduction
2. Activation Methods
2.1. Thermal Activation
2.2. Alkaline Activation
2.3. Radiation Activation
2.4. Transition Metal Ions and Metal Oxide Activation
3. Application of Sulfate Radicals in Wastewater Treatment
4. Benefits and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giannakis, S.; Lin, K.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Combination of Adsorption in Natural Clays and Photo-Catalytic Processes for Winery Wastewater Treatment. In Advances in Geoethics and Groundwater Management: Theory and Practice for a Sustainable Development; Abrunhosa, M., Chambel, A., Peppoloni, S., Chaminé, H.I., Eds.; Springer: Cham, Switzerland, 2021; pp. 291–294. ISBN 978-3-030-59320-9. [Google Scholar]
- Xia, X.; Zhu, F.; Li, J.; Yang, H.; Wei, L.; Li, Q.; Jiang, J.; Zhang, G.; Zhao, Q. A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism. Front. Chem. 2020, 8, 592056. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, H. Mn-Based Catalysts for Sulfate Radical-Based Advanced Oxidation Processes: A Review. Environ. Int. 2019, 133, 105141. [Google Scholar] [CrossRef] [PubMed]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Enhancement of EDDS-Photo-Fenton Process with Plant-Based Coagulants for Winery Wastewater Management. Environ. Res. 2023, 229, 116021. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, R.L.; Crimi, M.L.; Simpkin, T.J. In Situ Chemical Oxidation for Groundwater Remediation; Golden, C., Ed.; Springer International Publishing: Cham, Switzerland, 2011; ISBN 9781441978257. [Google Scholar]
- Rodríguez-Chueca, J.; Amor, C.; Silva, T.; Dionysiou, D.D.; Li, G.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater by Sulphate Radicals: HSO5−/Transition Metal/UV-A LEDs. Chem. Eng. J. 2017, 310, 473–483. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Flanagan, J.; Griffith, W.P.; Skapski, A.C. The Active Principle of Caro’s Acid, HSO5−: X-ray Crystal Structure of KHSO5·H2O. J. Chem. Soc. Chem. Commun. 1984, 23, 1574–1575. [Google Scholar] [CrossRef]
- Kolthoff, I.M.; Miller, K. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium 1. J. Am. Chem. Soc. 1951, 73, 3055–3059. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- Liang, C.J.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Soil and Sediment Contamination: An International Thermally Activated Persulfate Oxidation of (TCA) in Aqueous Systems and Soil Slurries of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil Sediment Contam. Int. J. 2003, 12, 207–228. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-Based Advanced Oxidation Processes (AOPs) for Organic- Contaminated Soil Remediation: A Review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Lucas, M.S.; Peres, J.A. Combined Organic Coagulants and Photocatalytic Processes for Winery Wastewater Treatment. J. Environ. Manag. 2023, 326, 116819. [Google Scholar] [CrossRef] [PubMed]
- Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608–633. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-Situ Chemical Oxidation: Principle and Applications of Peroxide and Persulfate Treatments in Wastewater Systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Su, H. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K. Recent Advances in Photo-Activated Sulfate Radical-Advanced Oxidation Process (SR-AOP) for Refractory Organic Pollutants Removal in Water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Herrmann, H. On the Photolysis of Simple Anions and Neutral Molecules as Sources of O−/OH, SOX− and Cl in Aqueous Solution. Phys. Chem. Chem. Phys. 2007, 9, 3935–3964. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Fernandes, L.; Afonso, S.; Oliveira, I.; Gonçalves, B.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater by Combined Almond Skin Coagulant and Sulfate Radicals: Assessment of Activators. Int. J. Environ. Res. Public Health 2023, 20, 2486. [Google Scholar] [CrossRef]
- Ateş, S.; Ateş, E.; Yazici Guvenc, S.; Can-Güven, E.; Aydın, S.; Varank, G. Removal of COD, phenol, and colour from olive mill wastewater by iron-activated persulphate process: Multivariate optimisation approach. Int. J. Environ. Anal. Chem. 2022, 1–23. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Amor, C.; Mota, J.; Lucas, M.S.; Peres, J.A. Oxidation of winery wastewater by sulphate radicals: Catalytic and solar photocatalytic activations. Environ. Sci. Pollut. Res. 2017, 24, 22414–22426. [Google Scholar] [CrossRef]
- Can-Güven, E.; Guvenc, S.Y.; Kavan, N.; Varank, G. Paper mill wastewater treatment by Fe2+ and heat-activated persulfate oxidation: Process modeling and optimization. Environ. Prog. Sustain. 2021, 40, e13508. [Google Scholar] [CrossRef]
- Michael, I.; Panagi, A.; Ioannou, L.A.; Frontistis, Z.; Fatta-Kassinos, D. Utilizing Solar Energy for the Purification of Olive Mill Wastewater Using a Pilot-Scale Photocatalytic Reactor after Coagulation-Flocculation. Water Res. 2014, 60, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Göde, J.N.; Souza, D.H.; Trevisan, V.; Skoronski, E. Application of the Fenton and Fenton-like Processes in the Landfill Leachate Tertiary Treatment. J. Environ. Chem. Eng. 2019, 7, 103352. [Google Scholar] [CrossRef]
- Domingues, E.; Silva, M.J.; Vaz, T.; Gomes, J.; Martins, R.C. Persulfate process activated by homogeneous and heterogeneous catalysts for synthetic olive mill wastewater treatment. Water 2021, 13, 3010. [Google Scholar] [CrossRef]
- Nidheesh, P.V.; Murshid, A.; Chanikya, P. Combination of electrochemically activated persulfate process and electro-coagulation for the treatment of municipal landfill leachate with low biodegradability. Chemosphere 2023, 338, 139449. [Google Scholar] [CrossRef] [PubMed]
- Ghauch, A.; Tuqan, A.M. Oxidation of Bisoprolol in Heated Persulfate/H2O Systems: Kinetics and Products. Chem. Eng. J. 2020, 183, 162–171. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate Radical Anion Oxidation of Diclofenac and Sulfamethoxazole for Water Decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Lucas, M.S.; Peres, J.A. Treatment of olive mill wastewater by a combined process: Fenton’s reagent and chemical coagulation. J. Environ. Sci. Health A 2009, 44, 198–205. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-Catalyzed Sulfate Radical-Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Applied Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
IWW | COD | BOD5 | pH | BOD5/COD |
---|---|---|---|---|
mg O2/L | mg O2/L | |||
Landfill leachate | 3000 | <300 | >7.5 | <0.1 |
Pharmaceutical | 375–32,500 | 200–6000 | 3.9–9.2 | 0.1–0.6 |
Pulp and paper | 900–3791 | 102–1197 | 6.5–10 | <0.2 |
Textile | 300–12,000 | 188–550 | 2–13.5 | <0.4 |
Winery | 11,886–15,553 | 6570–8858 | 5.3 | <0.3 |
Olive mill | 12,000–220,000 | 3400–100,000 | 3.9–5.2 | 0.2–0.5 |
Dairy | 4000–6000 | 2800–4480 | 6.5–12 | >0.5 |
IWW | Operational Conditions | Results | References |
---|---|---|---|
Winery wastewater (WW) | [PMS] = 5.88 mM [Co2+] = 5 mM pH = 6.0 UV-A LED (32.7 W m−2) | CODrem = 82.3% | Jorge et al. [20] |
Olive mill wastewater (OMW) | [PS] = 206 mM [Fe2+] = 70 mM pH = 5.0 Time = 95 min | CODrem = 46.7% | Sinan Ateşa et al. [21] |
Winery wastewater (WW) | [KPS] = 25 mM [Fe2+] = 25 mM pH = 4.5 Time = 180 min | TOCrem = 64% | Rodríguez-Chueca et al. [22] |
Paper mill wastewater (PMW) | CODPMW = 11,700 mg O2/L PS:COD ratio = 8.9 [Fe2+] = 100 mM pH = 3.0 Time = 92.92 min | CODrem = 72.7% | Can-Güven et al. [23] |
Olive mill wastewater (OMW) | CODOMW = 800 mg O2/L [PS] = 600 mg/L [Fe2+] = 300 mg/L pH = 5.0 | CODrem = 39% | Domingues et al. [26] |
Municipal landfill leachate (MLL) | CODMLL = 5650 mg O2/L [PS] = 500 mg/L [Fe2+] = 100 mg/L pH = 3 Time = 120 min Voltage—3 V | CODrem = 87.8% | Nidheesh et al. [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, N.; Teixeira, A.R.; Gomes, A.; Lucas, M.S.; Peres, J.A. Sulfate Radical Advanced Oxidation Processes: Activation Methods and Application to Industrial Wastewater Treatment. Eng. Proc. 2023, 56, 162. https://doi.org/10.3390/ASEC2023-15500
Jorge N, Teixeira AR, Gomes A, Lucas MS, Peres JA. Sulfate Radical Advanced Oxidation Processes: Activation Methods and Application to Industrial Wastewater Treatment. Engineering Proceedings. 2023; 56(1):162. https://doi.org/10.3390/ASEC2023-15500
Chicago/Turabian StyleJorge, Nuno, Ana R. Teixeira, Ana Gomes, Marco S. Lucas, and José A. Peres. 2023. "Sulfate Radical Advanced Oxidation Processes: Activation Methods and Application to Industrial Wastewater Treatment" Engineering Proceedings 56, no. 1: 162. https://doi.org/10.3390/ASEC2023-15500
APA StyleJorge, N., Teixeira, A. R., Gomes, A., Lucas, M. S., & Peres, J. A. (2023). Sulfate Radical Advanced Oxidation Processes: Activation Methods and Application to Industrial Wastewater Treatment. Engineering Proceedings, 56(1), 162. https://doi.org/10.3390/ASEC2023-15500