Feature Extraction of Ophthalmic Images Using Deep Learning and Machine Learning Algorithms †
Abstract
:1. Introduction
2. Proposed Methodology
2.1. STEP-1
2.2. STEP-2
2.3. STEP-3
- HOG
- LBP
- SIFT
- Gabor
2.4. STEP-4
- CNN
- KNN
- SVM
- RFC
2.5. STEP-5
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vani Kumari, S.; Usha Rani, K. Analysis on various feature extraction methods for medical image classification. In Advances in Computational and Bio-Engineering: Proceeding of the International Conference on Computational and Bio Engineering, Tirupati, India, 27–28 December 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 19–31. [Google Scholar]
- Khalil, M.; Ayad, H.; Adib, A. Performance evaluation of feature extraction techniques in MR-Brain image classification system. Procedia Comput. Sci. 2018, 127, 218–225. [Google Scholar] [CrossRef]
- Jeyabharathi, D.; Suruliandi, A. Performance analysis of feature extraction and classification techniques in CBIR. In Proceedings of the 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, 20–21 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1211–1214. [Google Scholar]
- Tariq, H.; Rashid, M.; Javed, A.; Zafar, E.; Alotaibi, S.S.; Zia, M.Y.I. Performance analysis of deep-neural-network-based automatic diagnosis of diabetic retinopathy. Sensors 2021, 22, 205. [Google Scholar] [CrossRef] [PubMed]
- Kamothi, N.; Thakur, R. Automatic Detection of Diabetic Retinopathy Using Convolution Neural Network. IRJET 2020, 7, 3810. [Google Scholar]
- Reddy, S.K.; Jaya, T. Feature Extraction and Reconstruction of Medical Images using Two-Dimensional Principal Component Analysis. J. Phys. Conf. Ser. 2021, 1817, 012012. [Google Scholar] [CrossRef]
- Sarhan, M.H.; Nasseri, M.A.; Zapp, D.; Maier, M.; Lohmann, C.P.; Navab, N.; Eslami, A. Machine learning techniques for ophthalmic data processing: A review. IEEE J. Biomed. Health Inform. 2020, 24, 3338–3350. [Google Scholar] [CrossRef] [PubMed]
- Porwal, P.; Pachade, S.; Kamble, R.; Kokare, M.; Deshmukh, G.; Sahasrabuddhe, V.; Meriaudeau, F. Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research. Data 2018, 3, 25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundeep, T.; Divyasree, U.; Tejaswi, K.; Vinithanjali, U.R.; Kumar, A.K. Feature Extraction of Ophthalmic Images Using Deep Learning and Machine Learning Algorithms. Eng. Proc. 2023, 56, 170. https://doi.org/10.3390/ASEC2023-15231
Sundeep T, Divyasree U, Tejaswi K, Vinithanjali UR, Kumar AK. Feature Extraction of Ophthalmic Images Using Deep Learning and Machine Learning Algorithms. Engineering Proceedings. 2023; 56(1):170. https://doi.org/10.3390/ASEC2023-15231
Chicago/Turabian StyleSundeep, Tunuri, Uppalapati Divyasree, Karumanchi Tejaswi, Ummadi Reddy Vinithanjali, and Anumandla Kiran Kumar. 2023. "Feature Extraction of Ophthalmic Images Using Deep Learning and Machine Learning Algorithms" Engineering Proceedings 56, no. 1: 170. https://doi.org/10.3390/ASEC2023-15231
APA StyleSundeep, T., Divyasree, U., Tejaswi, K., Vinithanjali, U. R., & Kumar, A. K. (2023). Feature Extraction of Ophthalmic Images Using Deep Learning and Machine Learning Algorithms. Engineering Proceedings, 56(1), 170. https://doi.org/10.3390/ASEC2023-15231