Distribution of Natural Radionuclides in Ama Fatma Oil Shale, Morocco †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Physical Preparation
2.2. Analytical Methods
3. Results and Discussions
3.1. Radionuclides Distributions
3.2. Pearson Correlation Coefficients among Radionuclides, TOC, and Mineralogical Composition
3.3. Study of 232Th/238U and 226Ra/238U Activity Concentration Ratios
3.3.1. 232Th/238U
3.3.2. 226Ra/238U
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dragović, S.; Gajić, B.; Dragović, R.; Janković-Mandić, L.; Slavković-Beškoski, L.J.; Mihailović, N.; Momčilović, M.Z.; Ćujić, M. Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J. Environ. Monit. 2012, 14, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Belafrites, A. Natural Radioactivity in Geological Samples from Algeria by SSNTD and Gamma-Ray Spectrometry. In Proceedings of the IX Radiation Physics & Protection Conference, Cairo, Egypt, 15–19 November 2008. [Google Scholar]
- Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E.; Angelopoulos, M.G. Natural radioactivity mapping of Greek surface soils. Environ. Int. 1996, 22, 3–8. [Google Scholar] [CrossRef]
- Shenber, M.A. Measurement of natural radioactivity levels in soil in Tripoli. Appl. Radiat. Isot. 1997, 48, 147–148. [Google Scholar] [CrossRef]
- UNSCEAR (UN Scientific Committee on the Effects of Atomic Radiation). Sources and Effects of Ionizing Radiation; United Nations: New York, NY, USA, 2000.
- Aydin, I.; Aydoðan, M.S.; Oksum, E.; Koçak, A. An attempt to use aerial gamma-ray spectrometry results in petrochemical assessments of the volcanic and plutonic associations of Central Anatolia (Turkey). Geophys. J. Int. 2006, 167, 1044–1052. [Google Scholar] [CrossRef]
- Zhitkov, A.S.; Vertman, E.M. Uranium and Thorium Content of Reference Samples from the Geological Survey of Japan “Igneous Rock Series 1986”. Geostand. Geoanalytical Res. 2006, 30, 107–111. [Google Scholar] [CrossRef]
- Ballesteros, L.; Zarza, I.; Ortiz, J.; Serradell, V. Occupational exposure to natural radioactivity in a zircon sand milling plant. J. Environ. Radioact. 2008, 99, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Xinwei, L.; Xiaolan, Z. 226Ra, 232Th and 40K activities in soils of Cuihua Mountain National Geological Park, China. Environ. Geol. 2008, 56, 353–357. [Google Scholar]
- Balbudhe, A.Y.; Vishwa Prasad, K.; Srivastava, S.K.; Padma Savitri, P.; Holkar, H.; Ravi, P.M.; Tripathi, R.M. Studies of natural radionuclides in rock and soil. In Proceedings of the 19th National Symposium on Environment (NSE-19): Climate Change and Its Impact, Kottayam, India, 11–13 December 2014; pp. 179–180. [Google Scholar]
- Azouazi, M.; Ouahidi, Y.; Fakhi, S.; Andres, Y.; Abbe, J.C.; Benmansour, M. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J. Environ. Radioact. 2001, 54, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Galindo, C.; Fakhi, S.; Nourreddine, A.; Hannache, H. Radiochemical Methods Analysis of U and Th: Metrological and Geochemical Applications. In Uranium, Mining and Hydrogeology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 799–806. [Google Scholar]
- Galindo, C.; Mougin, L.; Nourreddine, A.; Fakhi, S. Study of the partitioning of uranium and thorium in Moroccan black shale. Czechoslov. J. Phys. 2006, 56, D49–D54. [Google Scholar] [CrossRef]
- Fakhi, S.; Outayad, R.; Fait, E.; Mouflih, M.; Rentería, M.; Vioque, I.; Idrissi, A.A.; Benmansour, M.; Bouih, A.; Elhadi, H.; et al. Lithofacies Study of the Natural Phosphates: Quantification, Genetic Involvement and Distribution of Natural Radionuclides. In The New Uranium Mining Boom; Merkel, B., Schipek, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 287–296. [Google Scholar] [CrossRef]
- Fakhi, S.; Outayad, R.; Fait, E.; Faiz, Z.; Galindo, C.; Bouih, A.; Benmansour, M.; Benkdad, A.; Vioque, I.; Rentaria, M.; et al. Sequential extraction of U and Th isotopes: Study of their intrinsic distribution in phosphate and limestone sedimentary rock in comparison with black shale. In Uranium-Past and Future Challenges: Proceedings of the 7th International Conference on Uranium Mining and Hydrogeology; Springer International Publishing: Cham, Switzerland, 2015; pp. 581–590. [Google Scholar]
- Yücel, H.; Solmaz, A.N.; Köse, E.; Bor, D. Spectral interference corrections for the measurement of 238U in materials rich in thorium by a high resolution gamma-ray spectrometry. Appl. Radiat. Isot. 2009, 67, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Ghadeer, A.; Ibrahim, A.; Al-Masri, M.S. Geochemistry of uranium and thorium in phosphate deposits at the Syrian coastal area (Al-Haffah and Al-Qaradaha) and their environmental impacts. Environ. Geochem. Health 2019, 41, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- El Aouidi, S.; Fakhi, S.; Laissaoui, A.; Malek, O.A.; Benmansour, M.; Ayach, A.; El Batal, Y.; Aadjour, M.; Tahri, M.; El Yahyaoui, A.; et al. Geochemical characterization of the black shale from the Ama Fatma coastal site in the Southwest of Morocco. Am. J. Chem. 2017, 7, 153–162. [Google Scholar]
- El Batal, Y. Le potentiel pétrolier du bassin méso-cénozoïque Tarfaya-Boujdour: Caractérisation Sédimentologique, Lithostratigraphique, Géophysique et Géochimique de la Roche Mère d’âge Crétacé Supérieur. Ph.D. Thesis, Hassan II University, Casablanca, Morocco, 2014. [Google Scholar]
- Sources and Effects of Ionizing Radiation. UNSCEAR 2008 Report, Volume I: Sources. Scientific Annexes A and B. Available online: https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2008_Report_Vol.I-CORR.pdf (accessed on 17 July 2023).
- Wollenberg, H.A.; Smith, A.R. A geochemical assessment of terrestrial gamma-ray absorbed dose rates. Health Phys. 1990, 58, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Khattab, M.R.; Tawfic, A.F.; Omar, A.M. Uranium-series disequilibrium as a tool for tracing uranium accumulation zone in altered granite rocks. J. Environ. Anal. Chem. 2021, 101, 1750–1760. [Google Scholar] [CrossRef]
- Ivanovich, M.; Harmon, R.S. Uranium Series Disequilibrium; Application to Environmental Problems; Clarendon Press: Oxford, UK, 1982; pp. 32–39. [Google Scholar]
- Baweja, A.S.; Joshi, S.R.; Demayo, A. Radionuclide Content of Some Canadian Surface Waters: A Report on the National Radionuclides Monitoring Program, 1981–1984; Inland Waters Directorate, Environment Canada, Scientific Series; Inland Waters/Lands Directorate, Water Quality Branch: Ottawa, ON, Canada, 1987.
- Collerson, K.D.; Gregor, D.J.; McNaughton, D.; Baweja, A.S. Effect of Coal Dewatering and Coal Use on the Water Quality of the East Poplar River, Saskatchewan: A Literature Review; Environment Canada: Regina, SK, Canada, 1991.
- Dowdall, M.; O’Dea, J. Ra-226/U-238 disequilibrium in an upland organic soil exhibiting elevated natural radioactivity. J. Environ. Radioact. 2002, 59, 91–104. [Google Scholar] [CrossRef] [PubMed]
Samples | TOC (%) (Rock Eval) * | Depth (m) (from Top of Outcrop) * | Mineralogical Composition ** | Lithology * | Age * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Calcite | Dolomite | Clay | Halite | Fluorapatite | Pyrite | |||||
S1 (9) | 6.19 | 24.18 | 6.8 | 70.2 | 8.6 | 5.5 | 7.3 | 1.6 | - | Marl very rich in organic matter | Upper Cretaceous |
S1 (10) | 5.84 | 24.69 | 7.3 | 65.3 | 8.8 | 4.7 | 3.1 | 9.4 | 1.5 | ||
S1 (10–13) | 5.84 | 24.83 | 17.5 | 55.8 | 14.4 | 7.4 | 4.4 | 0.4 | 0.3 | ||
S1 (13–14) | 5.84 | 24.95 | 3.4 | 67.8 | 4.7 | 3.7 | 5.7 | 13.3 | 1.7 | ||
S1 (14) | 5.91 | 25.27 | 6.7 | 66.9 | 4.8 | 3.9 | 2.7 | 5.4 | 9.7 | ||
S1 (15) | - | 25.8 | 17.2 | 47.9 | 20.6 | 8.1 | 4.1 | 0.4 | 1.6 | ||
S1 (16) | 7.64 | 26.69 | 8.4 | 65.1 | 14.8 | 8.3 | 3.3 | - | - |
Samples | 226Ra | ±σ | 238U | ±σ | 232Th | ±σ | 214Pb | ±σ | 235U | ±σ | 40K | ±σ | 232Th/238U | 226Ra/238U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 (9) | 104.0 | 7.7 | 139.9 | 41.7 | 2.79 | 1.15 | 44.8 | 2.3 | 4.02 | 2.90 | 145.8 | 9.0 | 0.020 | 0.74 |
S1 (10) | 125.0 | 8.4 | 172.8 | 42.2 | 2.44 | 0.90 | 68.2 | 3.5 | 4.40 | 2.86 | 110.9 | 6.9 | 0.014 | 0.72 |
S1 (10–13) | 47.7 | 5.4 | 67.1 | 32.6 | 4.79 | 0.69 | 29.8 | 1.6 | 4.27 | 2.78 | 159.4 | 9.2 | 0.071 | 0.71 |
S1 (13–14) | 33.4 | 4.9 | 45.1 | 36.4 | 2.25 | 0.82 | 25.0 | 1.4 | - | - | 63.6 | 5.0 | 0.05 | 0.74 |
S1 (14) | 138.3 | 9.2 | 193.7 | 50.3 | 1.48 | 0.92 | 57.7 | 3.0 | 4.75 | 2.84 | 86.4 | 6.7 | 0.008 | 0.71 |
S1 (15) | 40.0 | 4.63 | 71.2 | 43.3 | - | - | 17.8 | 1.1 | - | - | 16.9 | 4.2 | - | 0.56 |
S1 (16) | 131.0 | 9.5 | 185.7 | 58.5 | 9.47 | 1.06 | 61.5 | 3.2 | 4.13 | 3.83 | 279.2 | 16.2 | 0.05 | 0.70 |
TOC | 226Ra | 238U | 232Th | 214Pb | 235U | 40K | Quartz | Calcite | Dolomite | Clay | Halite | Fluorapatite | Pyrite | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC | 1.00 | |||||||||||||
226Ra | 0.42 | 1.00 | ||||||||||||
238U | 0.44 | 0.99 | 1.00 | |||||||||||
232Th | 0.90 | 0.15 | 0.18 | 1.00 | ||||||||||
214Pb | 0.39 | 0.95 | 0.94 | 0.18 | 1.00 | |||||||||
235U | −0.46 | 0.34 | 0.36 | −0.53 | 0.30 | 1.00 | ||||||||
40K | 0.90 | 0.50 | 0.48 | 0.96 | 0.54 | −0.64 | 1.00 | |||||||
Quartz | −0.03 | −0.44 | −0.38 | 0.34 | −0.48 | −0.15 | −0.10 | 1.00 | ||||||
calcite | 0.10 | 0.56 | 0.49 | −0.31 | 0.59 | −0.05 | 0.34 | −0.92 | 1.00 | |||||
Dolomite | 0.58 | −0.32 | −0.25 | 0.84 | −0.37 | −0.63 | 0.09 | 0.85 | −0.85 | 1.00 | ||||
Clay | 0.70 | −0.17 | −0.11 | 0.91 | −0.22 | −0.65 | 0.41 | 0.75 | −0.67 | 0.94 | 1.00 | |||
Halite | −0.18 | −0.42 | −0.47 | −0.21 | −0.46 | −0.71 | −0.09 | −0.17 | 0.25 | −0.15 | −0.12 | 1.00 | ||
Fluorapatite | −0.49 | 0.07 | 0.03 | −0.58 | 0.26 | 0.51 | −0.22 | −0.78 | 0.56 | −0.70 | −0.81 | −0.09 | 1.00 | |
Pyrite | 0.99 | 0.68 | 0.70 | −0.70 | 0.46 | 0.99 | −0.13 | −0.40 | 0.43 | −0.51 | −0.51 | −0.60 | 0.05 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Aouidi, S.; Mejjad, N.; Benkdad, A.; Laissaoui, A.; Benmansour, M.; Fakhi, S. Distribution of Natural Radionuclides in Ama Fatma Oil Shale, Morocco. Eng. Proc. 2023, 56, 229. https://doi.org/10.3390/ASEC2023-15981
El Aouidi S, Mejjad N, Benkdad A, Laissaoui A, Benmansour M, Fakhi S. Distribution of Natural Radionuclides in Ama Fatma Oil Shale, Morocco. Engineering Proceedings. 2023; 56(1):229. https://doi.org/10.3390/ASEC2023-15981
Chicago/Turabian StyleEl Aouidi, Samira, Nezha Mejjad, Azzouz Benkdad, Abdelmourhit Laissaoui, Moncef Benmansour, and Said Fakhi. 2023. "Distribution of Natural Radionuclides in Ama Fatma Oil Shale, Morocco" Engineering Proceedings 56, no. 1: 229. https://doi.org/10.3390/ASEC2023-15981
APA StyleEl Aouidi, S., Mejjad, N., Benkdad, A., Laissaoui, A., Benmansour, M., & Fakhi, S. (2023). Distribution of Natural Radionuclides in Ama Fatma Oil Shale, Morocco. Engineering Proceedings, 56(1), 229. https://doi.org/10.3390/ASEC2023-15981