MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulations
2.2. Structure
3. Results
3.1. Energy Band Gap in 2D/3D Perovskite Solar Cells
3.2. Efficiency of the Device
3.3. Deffects in 2D Perovskites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, S.; Liu, T.; Du, Y.; Zhou, X.; Gao, J.; Xie, Y.; Shen, F.; Liu, Y.; Cho, Y. 2D Material and Perovskite Heterostructure for Optoelectronic Applications. Nanomaterials 2022, 12, 2100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, T.; Loo, Y. Advancing 2D perovskites for efficient and stable solar cells: Challenges and opportunities. Adv. Mater. 2022, 34, 2105849. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, W.; Chen, X.; Chen, Y.; Li, X.; Wang, M.; Zhou, Y.; Yan, H.; Zheng, Z.; Zhang, Y. Dual optimization of bulk and surface via guanidine halide for efficient and stable 2D/3D hybrid perovskite solar cells. Adv. Energy Mater. 2022, 12, 2201105. [Google Scholar] [CrossRef]
- Choi, H.-S.; Kim, H.-S. 3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance. Materials 2020, 13, 3868. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Han, N.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. High-quality Ruddlesden–Popper perovskite film formation for high-performance perovskite solar cells. Adv. Mater. 2021, 33, 2002582. [Google Scholar] [CrossRef] [PubMed]
- Sidhik, S. Halide Perovskites for High-Efficiency and Durable Photovoltaics. Doctoral Dissertation, Rice University, Houston, TX, USA, 2023. [Google Scholar]
- Tsai, H.; Nie, W.; Blancon, J.C.; Stoumpos, C.C.; Asadpour, R.; Harutyunyan, B.; Neukirch, A.J.; Verduzco, R.; Crochet, J.J.; Tretiak, S.; et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Sidhik, S.; Li, W.; Samani, M.H.K.; Zhang, H.; Wang, Y.; Hoffman, J.; Fehr, A.K.; Wong, M.S.; Katan, C.; Even, J.; et al. Memory Seeds Enable High Structural Phase Purity in 2D Perovskite Films for High-Efficiency Devices. Adv. Mater. 2021, 33, 2007176. [Google Scholar] [CrossRef] [PubMed]
- Mehrabian, M.; Akhavan, O.; Rabiee, N.; Afshar, E.N.; Zare, E.N. Lead-free MAGeI3 as a suitable alternative for MAPbI3 in nanostructured perovskite solar cells: A simulation study. Environ. Sci. Pollut. Res. 2023, 30, 57032–57040. [Google Scholar] [CrossRef] [PubMed]
- Raghvendra, S.; Pathak, C.; Pandey, S.K. Design, Performance, and Defect Density Analysis of Efficient Eco-Friendly Perovskite Solar Cell. IEEE Trans. Electron. Devices 2020, 67, 2837–2843. [Google Scholar] [CrossRef]
- Deepthi, J.K.; Sebastian, V. Comparative study on the performance of different Lead-based and Lead-free perovskite solar cells. Adv. Theory Simul. 2021, 4, 2100027. [Google Scholar]
- Hima, A.; Lakhdar, N. Design and simulation of homojunction perovskite CH3NH3GeI3 solar cells. Indian J. Phys. 2023, 97, 727–731. [Google Scholar] [CrossRef]
- Verschraegen, J.; Nollet, P.; Burgelman, M. SCAPS: A versatile simulation tool for thin film solar cells. J. Comput. Electron. 2002, 1, 29–33. [Google Scholar]
- Nacereddine, L.; Hima, A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Aterials 2020, 99, 109517. [Google Scholar]
- Joyprokash, C.; Islam, M.A.; Reza, S. Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells. Sol. Energy 2021, 230, 195–207. [Google Scholar]
- Liu, Y.; Akin, S.; Pan, L.; Uchida, R.; Arora, N.; Milić, J.V.; Hinderhofer, A.; Schreiber, F.; Uhl, A.R.; Zakeeruddin, S.M.; et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 2019, 5, eaaw2543. [Google Scholar] [CrossRef]
- Zhou, N.; Shen, Y.; Li, L.; Tan, S.; Liu, N.; Zheng, G.; Chen, Q.; Zhou, H. Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. J. Am. Chem. Soc. 2018, 140, 459–465. [Google Scholar] [CrossRef]
Parameters | MAGeI3 [14] | BA2MA2Pb3I10 [15] | BA2MA3Pb4I13 [15] | C60 [14] | Cu2O [15] | ITO [14] |
---|---|---|---|---|---|---|
L (nm) | 850 | 50 | 50 | 50 | 250 | 100 |
(eV) | 1.9 | 1.85 | 1.60 | 1.7 | 3.3 | 3.65 |
(eV) | 3.98 | 3.53 | 3.87 | 3.9 | 4.8 | |
10 | 5.7 | 5.8 | 4.2 | 9 | 8.9 | |
(cm−3) | 1 × 1016 | 7.6 × 1017 | 7.24 × 1017 | 8 × 1019 | 2 × 1013 | 5.8 × 1018 |
(cm−3) | 1 × 1015 | 1.33 × 1018 | 1.5 × 1018 | 8 × 1019 | 2 × 1013 | 1 × 1018 |
(cm2/Vs) | 16.2 | 0.8 | 1.4 | 8 × 10−2 | 100 | 10 |
(cm2/Vs) | 10.1 | 0.8 | 1.4 | 3.5 × 10−3 | 25 | 10 |
(cm−3) | 10 × 1019 | 1 × 1010 | 1 × 1010 | 2.6 × 1018 | 1 × 1018 | 1 × 1020 |
(cm−3) | 10 × 109 | - | - | - | - | |
(cm−3) | Varied | Varied | Varied | - | - | - |
Parameters | ||||
---|---|---|---|---|
Absorber Layer 2D/3D | Voc | Jsc | FF | PCE |
MAGeI3 (Only 3D) | 1.9430 | 15.548 | 89.40 | 27.01% |
BA2MA2Pb3I10/MAGeI3 | 1.9439 | 15.919 | 89.34 | 27.65% |
BA2MA2Pb4I13/MAGeI3 | 1.9466 | 17.006 | 89.52 | 29.64% |
Glass/ITO/PEDOT:PSS/BA2MA3Pb4I13/PC61BM/Ag (Experimental [17]) | 0.9540 | 16.13 | 69.51 | 10.70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vara Prasad, H.D.; Giri, L.I.; Midya, K. MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency. Eng. Proc. 2023, 56, 282. https://doi.org/10.3390/ASEC2023-15927
Vara Prasad HD, Giri LI, Midya K. MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency. Engineering Proceedings. 2023; 56(1):282. https://doi.org/10.3390/ASEC2023-15927
Chicago/Turabian StyleVara Prasad, H. Devi, Lalat Indu Giri, and Kousik Midya. 2023. "MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency" Engineering Proceedings 56, no. 1: 282. https://doi.org/10.3390/ASEC2023-15927
APA StyleVara Prasad, H. D., Giri, L. I., & Midya, K. (2023). MAGeI3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency. Engineering Proceedings, 56(1), 282. https://doi.org/10.3390/ASEC2023-15927