The Use of AI for Prosthodontic Restoration: Predictable and Safer Dentistry †
Abstract
:1. Introduction
1.1. Historical Context
1.2. AI in Treatment Planning and Digital Impression Acquisition
1.3. AI in Prosthesis Design and Fabrication
2. Discussion
- 1.
- CAD/CAM Software:
- 2.
- Diagnostic Imaging Software:
- 3.
- Aesthetic Simulation Software:
- 4.
- Patient Monitoring Apps:
- 5.
- Patient Data Management Platforms:
- 6.
- Training and Decision Support Systems:
- 1.
- Design and Production of Prosthetics:
- 2.
- Diagnosis and Treatment Planning:
- 3.
- Post-operative Monitoring:
- 4.
- Training and Support for Professionals:
- 5.
- Patient Information Management:
- 6.
- Simulation of Aesthetic Outcome:
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fogel, A.L.; Kvedar, J.C. Artificial intelligence powers digital medicine. NPJ Digit. Med. 2018, 1, 5. [Google Scholar] [CrossRef]
- Agrawal, P.; Nikhade, P. Artificial Intelligence in Dentistry: Past, Present, and Future. Cureus 2022, 14, e27405. [Google Scholar] [CrossRef]
- Riva, M.A. Advertising: Giacomo Puccini in dental history. Br. Dent. J. 2018, 225, 684. [Google Scholar] [CrossRef]
- Rueggeberg, F.A. From vulcanite to vinyl, a history of resins in restorative dentistry. J. Prosthet. Dent. 2002, 87, 364–379. [Google Scholar] [CrossRef]
- Blackburn, S.P. A short history of dentistry in ancient times. Cal 1977, 40, 24–30. [Google Scholar]
- Alqutaibi, A.Y. Artificial intelligence (AI) models show potential in recognizing the dental implant type, predicting implant success, and optimizing implant design. J. Evid.-Based Dent. Pract. 2023, 23, 101836. [Google Scholar] [CrossRef]
- Cicciù, M.; Fiorillo, L.; D’Amico, C.; Gambino, D.; Amantia, E.M.; Laino, L.; Crimi, S.; Campagna, P.; Bianchi, A.; Herford, A.S.; et al. 3D digital impression systems compared with traditional techniques in dentistry: A recent data systematic review. Materials 2020, 13, 1982. [Google Scholar] [CrossRef]
- Nedelcu, R.; Olsson, P.; Nyström, I.; Rydén, J.; Thor, A. Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. J. Dent. 2018, 69, 110–118. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Schmidt, A.; Klussmann, L.; Wöstmann, B.; Schlenz, M.A. Accuracy of Digital and Conventional Full-Arch Impressions in Patients: An Update. J. Clin. Med. 2020, 9, 688. [Google Scholar] [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Vyas, S.; Barmak, B.A.; Galluci, G.O.; Att, W.; Krishnamurthy, V.R. Artificial intelligence applications in implant dentistry: A systematic review. J. Prosthet. Dent. 2020, 13, 1982. [Google Scholar] [CrossRef]
- Alsharbaty, M.H.M.; Alikhasi, M.; Zarrati, S.; Shamshiri, A.R. A Clinical Comparative Study of 3-Dimensional Accuracy between Digital and Conventional Implant Impression Techniques. J. Prosthodont. 2019, 28, e902–e908. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Shinya, A.; Kuroda, S.; Gomi, H. The accuracy of the CAD system using intraoral and extraoral scanners for designing of fixed dental prostheses. Dent. Mater. J. 2017, 36, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.B.; Franken, P.; Celeste, R.K.; Leitune, V.C.B.; Collares, F.M. CAD/CAM or conventional ceramic materials restorations longevity: A systematic review and meta-analysis. J. Prosthodont. Res. 2019, 63, 389–395. [Google Scholar] [CrossRef]
- Ferrini, F.; Sannino, G.; Chiola, C.; Capparé, P.; Gastaldi, G.; Gherlone, E.F. Influence of Intra-Oral Scanner (I.O.S.) on The Marginal Accuracy of CAD/CAM Single Crowns. Int. J. Environ. Res. Public Health 2019, 16, 544. [Google Scholar] [CrossRef]
- Magne, P. Noninvasive bilaminar CAD/CAM composite resin veneers: A semi-(in)direct approach. Int. J. Esthet. Dent. 2017, 12, 134–154. [Google Scholar]
- Giudice, A.L.; Quinzi, V.; Ronsivalle, V.; Farronato, M.; Nicotra, C.; Indelicato, F.; Isola, G. Evaluation of imaging software accuracy for 3-dimensional analysis of the mandibular condyle. A comparative study using a surface-to-surface matching technique. Int. J. Environ. Res. Public Health 2020, 17, 4789. [Google Scholar] [CrossRef]
- Leonardi, R.; Ronsivalle, V.; Lagravere, M.O.; Barbato, E.; Isola, G.; Giudice, A.L. Three-dimensional assessment of the spheno-occipital synchondrosis and clivus after tooth-borne and bone-borne rapid maxillary expansion: A retrospective CBCT study using voxel-based superimposition. Angle Orthod. 2021, 91, 822–829. [Google Scholar] [CrossRef]
- Alqutaibi, A.Y.; Aboalrejal, A.N. Artificial intelligence (AI) as an aid in restorative dentistry is promising, but still a work in progress. J. Evid.-Based Dent. Pract. 2023, 23, 101837. [Google Scholar] [CrossRef]
- Arora, H.; Ivanovski, S. Ten Year Clinical and Aesthetic Outcomes of an Immediately Placed and Restored Implant in the Anterior Maxilla: A Case Report. Prosthesis 2021, 3, 129–136. [Google Scholar] [CrossRef]
- Uccioli, U.; Fonzar, A.; Lanzuolo, S.; Meloni, S.M.; Lumbau, A.I.; Cicciù, M.; Tallarico, M. Tissue Recession around a Dental Implant in Anterior Maxilla: How to Manage Soft Tissue When Things Go Wrong? Prosthesis 2021, 3, 209–220. [Google Scholar] [CrossRef]
- Beretta, M.; Manfredini, M.; Poli, P.P.; Tansella, S.; Maiorana, C. Full Digital Model-Free Maxillary Prosthetic Rehabilitation by Means of One-Piece Implants: A Proof of Concept Clinical Report with Three-Years Follow Up. Prosthesis 2022, 4, 202–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervino, G.; Peditto, M.; Portelli, M.; Militi, A.; Matarese, G.; Fiorillo, L.; Nucera, R.; Oteri, G. The Use of AI for Prosthodontic Restoration: Predictable and Safer Dentistry. Eng. Proc. 2023, 56, 68. https://doi.org/10.3390/ASEC2023-15304
Cervino G, Peditto M, Portelli M, Militi A, Matarese G, Fiorillo L, Nucera R, Oteri G. The Use of AI for Prosthodontic Restoration: Predictable and Safer Dentistry. Engineering Proceedings. 2023; 56(1):68. https://doi.org/10.3390/ASEC2023-15304
Chicago/Turabian StyleCervino, Gabriele, Matteo Peditto, Marco Portelli, Angela Militi, Giovanni Matarese, Luca Fiorillo, Riccardo Nucera, and Giacomo Oteri. 2023. "The Use of AI for Prosthodontic Restoration: Predictable and Safer Dentistry" Engineering Proceedings 56, no. 1: 68. https://doi.org/10.3390/ASEC2023-15304
APA StyleCervino, G., Peditto, M., Portelli, M., Militi, A., Matarese, G., Fiorillo, L., Nucera, R., & Oteri, G. (2023). The Use of AI for Prosthodontic Restoration: Predictable and Safer Dentistry. Engineering Proceedings, 56(1), 68. https://doi.org/10.3390/ASEC2023-15304