Biomaterials: A Sustainable Solution for a Circular Economy †
Abstract
:1. Introduction
2. Production of Biobased Plastics by Microorganisms Using Low-Cost Substrates
3. Applications of Biomaterials in Different Sectors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisendorf, S.; Pietrulla, F. The circular economy and circular economic concepts—A literature analysis and redefinition. Thunderbird Int. Bus. Rev. 2018, 60, 771–782. [Google Scholar] [CrossRef]
- Robaina, M.; Murillo, K.; Rocha, E.; Villar, J. Circular economy in plastic waste—Efficiency analysis of European countries. Sci. Total Environ. 2020, 730, 139038. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Turning Off the Tap: How the World Can End Plastic Pollution and Create a Circular Economy | UNEP—UN Environment Programme. 2023. Available online: https://www.unep.org/resources/turning-off-tap-end-plastic-pollution-create-circular-economy (accessed on 15 June 2023).
- Soares, J.; Miguel, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Public views on plastic pollution: Knowledge, perceived impacts, and pro-environmental behaviours. J. Hazard. Mater. 2021, 412, 125227. [Google Scholar] [CrossRef] [PubMed]
- Filho, W.L.; Salvia, A.L.; Bonoli, A.; Saari, U.A.; Voronova, V.; Klõga, M.; Kumbhar, S.S.; Olszewski, K.; De Quevedo, D.M.; Barbir, J. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 2021, 755, 142732. [Google Scholar] [CrossRef] [PubMed]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Abrha, H.; Cabrera, J.; Dai, Y.; Irfan, M.; Toma, A.; Jiao, S.; Liu, X. Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis. Sustainability 2022, 14, 4855. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental performance comparison of bioplastics and petrochemical plastics: A review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- Nandakumar, A.; Chuah, J.A.; Sudesh, K. Bioplastics: A boon or bane? Renew. Sustain. Energy Rev. 2021, 147, 111237. [Google Scholar] [CrossRef]
- Mannina, G.; Presti, D.; Montiel-Jarillo, G.; Carrera, J.; Suárez-Ojeda, M.E. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. Bioresour. Technol. 2020, 297, 122478. [Google Scholar] [CrossRef]
- Folino, A.; Karageorgiou, A.; Calabrò, P.S.; Komilis, D. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 2020, 12, 6030. [Google Scholar] [CrossRef]
- Pathak, S.; Sneha, C.; Mathew, B.B. Bioplastics: Its Timeline Based Scenario & Challenges. J. Polym. Biopolym. Phys. Chem. 2014, 2, 84–90. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Shen, L.; Chen, Z.; Zhang, Y.; Zhang, C.; Li, Q.; Wang, Y. Production of polyhydroxyalkanoates by activated sludge: Correlation with extracellular polymeric substances and characteristics of activated sludge. Chem. Eng. J. 2019, 361, 219–226. [Google Scholar] [CrossRef]
- Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 2020, 18, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, T.; Mussone, P.; Khalil, H.; Bressler, D. Progress in bio-based plastics and plasticizing modifications. J. Mater. Chem. A 2013, 1, 13379–13398. [Google Scholar] [CrossRef]
- Rajvanshi, J.; Sogani, M.; Kumar, A.; Arora, S.; Syed, Z.; Sonu, K. Science of the Total Environment Perceiving biobased plastics as an alternative and innovative solution to combat plastic pollution for a circular economy. Sci. Total Environ. 2023, 874, 162441. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Chaudhary, J.; Singh, P.; Alsanie, W.F.; Grammatikos, S.A.; Thakur, V.K. Synthesis of Bio-based monomers and polymers using microbes for a sustainable bioeconomy. Bioresour. Technol. 2022, 344, 126156. [Google Scholar] [CrossRef]
- Perez-Zabaleta, M.; Atasoy, M.; Khatami, K.; Eriksson, E.; Cetecioglu, Z. Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures. Bioresour. Technol. 2021, 323, 124604. [Google Scholar] [CrossRef]
- Vu, D.H.; Wainaina, S.; Taherzadeh, M.J.; Åkesson, D.; Ferreira, J.A. Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids. Bioengineered 2021, 12, 2480–2498. [Google Scholar] [CrossRef]
- Sangkharak, K.; Khaithongkaeo, P.; Chuaikhunupakarn, T.; Choonut, A.; Prasertsan, P. The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Convers. Biorefinery 2021, 11, 1651–1664. [Google Scholar] [CrossRef]
- Pernicova, I.; Kucera, D.; Nebesarova, J.; Kalina, M.; Novackova, I.; Koller, M.; Obruca, S. Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour. Technol. 2019, 292, 122028. [Google Scholar] [CrossRef]
- Mohapatra, S.; Sarkar, B.; Samantaray, D.P.; Daware, A.; Maity, S.; Pattnaik, S.; Bhattacharjee, S. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ. Technol. 2017, 38, 3201–3208. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Hathi, Z.; Haque, M.A.; Kumar, S.; Kumar, A.; Singh, E.; Lin, C.S.K. Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. Environ. Res. 2022, 214, 114001. [Google Scholar] [CrossRef] [PubMed]
- Danial, A.W.; Hamdy, S.M.; Alrumman, S.A.; Gad El-Rab, S.M.F.; Shoreit, A.A.M.; Hesham, A.E.L. Bioplastic production by bacillus wiedmannii as-02 ok576278 using different agricultural wastes. Microorganisms 2021, 9, 2395. [Google Scholar] [CrossRef] [PubMed]
- Bioplastics Market Data—European Bioplastics. Available online: https://www.european-bioplastics.org/market/https://www.european-bioplastics.org/market/ (accessed on 27 December 2023).
- Applications/Sectors—European Bioplastics e.V. Available online: https://www.european-bioplastics.org/market/applications-sectors/ (accessed on 29 July 2023).
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Das, B.; Bhardwaj, P.K.; Tampha, S.; Singh, H.K.; Chanu, L.D.; Sharma, N.; Devi, S.I. Socio-economic sustainability with circular economy—An alternative approach. Sci. Total Environ. 2023, 904, 166630. [Google Scholar] [CrossRef]
S.No. | Microbe | Substrate | Biobased Product | Product Yield | References |
---|---|---|---|---|---|
1. | MMC | Acid-rich waste stream | PHA | 43.5% w/w | [18] |
2. | Bacillus megaterium | VFA-rich food waste stream | PHB | 9–10% CDW | [19] |
3. | Bacillus thermoamylovorans | Waste cooking oil | [P(3HB-co-3HV)] | 3.5 g/L | [20] |
4. | Halomonas hydrothermalis | Waste frying oil | PHB | >25% CDW | [21] |
5. | Halomonas neptunia | ||||
6. | Bacillus subtilis | Fish solid waste | PHB | 1.62 g/L | [22] |
7. | Haloferax mediterranei | Food waste and levulinic acid | [P(3HB-co-3HV)] | 56.70% | [23] |
8. | Bacillus wiedmannii | Orange peel | PHB | 423 mg/L | [24] |
Mango peel | 390 mg/L | ||||
Banana peel | 249 mg/L | ||||
Onion peel | 158 mg/L | ||||
Rice straw | 144 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajvanshi, J.; Sogani, M.; Kumar, A.; Arora, S. Biomaterials: A Sustainable Solution for a Circular Economy. Eng. Proc. 2023, 59, 133. https://doi.org/10.3390/engproc2023059133
Rajvanshi J, Sogani M, Kumar A, Arora S. Biomaterials: A Sustainable Solution for a Circular Economy. Engineering Proceedings. 2023; 59(1):133. https://doi.org/10.3390/engproc2023059133
Chicago/Turabian StyleRajvanshi, Jayana, Monika Sogani, Anu Kumar, and Sudipti Arora. 2023. "Biomaterials: A Sustainable Solution for a Circular Economy" Engineering Proceedings 59, no. 1: 133. https://doi.org/10.3390/engproc2023059133
APA StyleRajvanshi, J., Sogani, M., Kumar, A., & Arora, S. (2023). Biomaterials: A Sustainable Solution for a Circular Economy. Engineering Proceedings, 59(1), 133. https://doi.org/10.3390/engproc2023059133