Resolution Enhancement of Brain MRI Images Using Deep Learning †
Abstract
:1. Introduction
- (a)
- Examine the deep learning framework used for super resolution, specifically for MRI brain images, to overcome physical constraints and artefacts that reduce image quality.
- (b)
- Analyze the brain MRI dataset commonly used for the super resolution approach to deliver exact diagnosis.
- (c)
- Image quality assessment (IQA) for evaluating an image’s visual quality is covered for several imaging modalities.
2. Materials and Methods/Methodology
2.1. Supervised or Discriminative Learning
2.1.1. Convolutional Neural Network for Super-Resolution for MRI Brain Image
2.1.2. Densely Connected Architecture for Super Solution of the MRI Dataset
2.1.3. Residual Learning for Super-Resolution of the MRI Dataset
2.2. Unsupervised or Generative Learning
2.2.1. Generative Adversarial Networks (GAN) for Super-Resolution of MRI Brain Image
2.2.2. Reduce Scan Time Using GAN Methods
2.3. Hybrid Architecture
3. Results and Discussions
3.1. Qualitative and Quantitative Analysis
3.1.1. Peak Signal-to-Noise Ratio (PSNR)
3.1.2. Structure Similarity Index (SSIM)
3.1.3. Optimizers
3.1.4. Loss Function
3.2. Performance of ADAM Optimizer and Use of Loss Functions Using Super Resolution Convolution Neural Network (SRCNN)
3.3. Performance of ADAM Optimizer and Use of Loss Functions Using Super Resolution Residual Network (SR ResNet)
3.4. Comparative Analysis Table of SRCNN and SR ResNet with ADAM Optimizer and Loss Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Wang, X.; Jung, C. DCSR: Dilated convolutions for single image super-resolution. IEEE Trans. Image Process. 2018, 28, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, P.; Dhavileswarapu, A.; Ibrahim, S.; Paul, R.; Gupta, R. Exploring the Potential of VGG-16 Architecture for Accurate Brain Tumor Detection Using Deep Learning. J. Comput. Mech. Manag. 2023, 2, 23056. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, F.; Cheng, J.; Wang, L.; Yap, P.-T.; Shen, D. Longitudinally Guided Super-Resolution of Neonatal Brain Magnetic Resonance Images. IEEE Trans. Cybern. 2019, 49, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Thurnhofer-Hemsi, K.; López-Rubio, E.; Roé-Vellvé, N.; Domínguez, E.; Molina-Cabello, M.A. Super-resolution of 3D Magnetic Resonance Images by Random Shifting and Convolutional Neural Networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Sindel, A.; Breininger, K.; Käßer, J.; Hess, A.; Maier, A.; Köhler, T. Learning from a Handful Volumes: MRI Resolution Enhancement with Volumetric Super-Resolution Forests. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1453–1457. [Google Scholar] [CrossRef]
- Irina, S.; Vilaplana, V. Brain MRI super-resolution using 3D generative adversarial networks. arXiv 2018, arXiv:1812.11440. [Google Scholar]
- Chen, Y.; Xie, Y.; Zhou, Z.; Shi, F.; Christodoulou, A.G.; Li, D. Brain MRI super resolution using 3D deep densely connected neural networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018. [Google Scholar]
- Du, J.; Wang, L.; Gholipour, A.; He, Z.; Jia, Y. Accelerated Super-resolution MR Image Reconstruction via a 3D Densely Connected Deep Convolutional Neural Network. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 349–355. [Google Scholar] [CrossRef]
- Mzoughi, H.; Njeh, I.; Slima, M.B.; Hamida, A.B. Histogram equalization-based techniques for contrast enhancement of MRI brain Glioma tumor images: Comparative study. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, F.; Christodoulou, A.G.; Xie, Y.; Zhou, Z.; Li, D. Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part I. Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Zheng, H.; Zeng, K.; Guo, D.; Ying, J.; Yang, Y.; Peng, X.; Huang, F.; Chen, Z.; Qu, X. Multi-Contrast Brain MRI Image Super-Resolution with Gradient-Guided Edge Enhancement. IEEE Access 2018, 6, 57856–57867. [Google Scholar] [CrossRef]
- Li, Y.; Song, B.; Guo, J.; Du, X.; Guizani, M. Super-Resolution of Brain MRI Images Using Overcomplete Dictionaries and Nonlocal Similarity. IEEE Access 2019, 7, 25897–25907. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Wang, Y.; Zhou, H.; Yang, H.; Qiao, Z. DeepVolume: Brain Structure and Spatial Connection-Aware Network for Brain MRI Super-Resolution. IEEE Trans. Cybern. 2021, 51, 3441–3454. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; He, Y. Gradient-Guided Convolutional Neural Network for MRI Image Super-Resolution. Appl. Sci. 2019, 9, 4874. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J. Mouse brain MR super-resolution using a deep learning network trained with optical imaging data. Front. Radiol. 2023, 3, 1155866. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.-H. Deep learning for single image super-resolution: A brief review. IEEE Trans. Multimed. 2019, 21, 3106–3121. [Google Scholar] [CrossRef]
- Liu, C.; Sun, X.; Chen, C.; Rosin, P.L.; Yan, Y.; Jin, L.; Peng, X. Multi-Scale Residual Hierarchical Dense Networks for Single Image Super-Resolution. IEEE Access 2019, 7, 60572–60583. [Google Scholar] [CrossRef]
- Shende, P.; Pawar, M.; Kakde, S. A Brief Review on: MRI Images Reconstruction using GAN. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019; pp. 139–142. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, G.; Lio, P. How can we make GAN perform better in single medical image super-resolution? A lesion focused multi-scale approach. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Zhao, X.; Zhang, Y.; Qin, Y.; Wang, Q.; Zhang, T.; Li, T. Single MR image super-resolution via channel splitting and serial fusion network. Knowl. -Based Syst. 2022, 246, 108669. [Google Scholar] [CrossRef]
- Du, J.; Wang, L.; Liu, Y.; Zhou, Z.; He, Z.; Jia, Y. Brain MRI Super-Resolution Using 3D Dilated Convolutional Encoder–Decoder Network. IEEE Access 2020, 8, 18938–18950. [Google Scholar] [CrossRef]
- Mane, V.; Jadhav, S.; Lal, P. Image super-resolution for MRI images using 3D faster super-resolution convolutional neural network architecture. In Proceedings of the International Conference on Automation, Computing and Communication 2020 (ICACC 2020), Navi Mumbai, India, 27–28 June 2020. [Google Scholar]
- Tan, C.; Zhu, J.; Lio, P. Arbitrary scale super-resolution for brain MRI images. In Proceedings of the Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, 5–7 June 2020; Proceedings, Part I. Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Wang, L.; Du, J.; Zhu, H.; He, Z.; Jia, Y. Brain MR Image Super-resolution using 3D Feature Attention Network. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 1151–1155. [Google Scholar]
- Zhang, H.; Shinomiya, Y.; Yoshida, S. 3D MRI Reconstruction Based on 2D Generative Adversarial Network Super-Resolution. Sensors 2021, 21, 2978. [Google Scholar] [CrossRef] [PubMed]
Sl. No | Optimizer | Loss Function | PSNR | SSIM | MSE |
---|---|---|---|---|---|
1 | ADAM | MSE | 27.37 | 0.81 | 0.0008 |
2 | ADAM | MAE | 26.29 | 0.75 | 0.0009 |
3 | ADAM | Perceptual loss | 28.64 | 0.76 | 0.0008 |
Sl. No | Optimizer | Loss Function | PSNR | SSIM | MSE |
---|---|---|---|---|---|
1 | ADAM | MSE | 30.84 | 0.90 | 0.0008 |
2 | ADAM | MAE | 30.65 | 0.91 | 0.0009 |
3 | ADAM | Perceptual loss | 30.93 | 0.90 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, M.; Upadhyaya, B.; Rai, J.; Sharma, K. Resolution Enhancement of Brain MRI Images Using Deep Learning. Eng. Proc. 2023, 59, 158. https://doi.org/10.3390/engproc2023059158
Roy M, Upadhyaya B, Rai J, Sharma K. Resolution Enhancement of Brain MRI Images Using Deep Learning. Engineering Proceedings. 2023; 59(1):158. https://doi.org/10.3390/engproc2023059158
Chicago/Turabian StyleRoy, Minakshi, Biraj Upadhyaya, Jyoti Rai, and Kalpana Sharma. 2023. "Resolution Enhancement of Brain MRI Images Using Deep Learning" Engineering Proceedings 59, no. 1: 158. https://doi.org/10.3390/engproc2023059158
APA StyleRoy, M., Upadhyaya, B., Rai, J., & Sharma, K. (2023). Resolution Enhancement of Brain MRI Images Using Deep Learning. Engineering Proceedings, 59(1), 158. https://doi.org/10.3390/engproc2023059158