Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges †
Abstract
:1. Introduction
2. Methodology
3. Data Synthesis and Analysis
4. Modalities Used in ASD Detection
5. Deep Learning Models
6. Performance Analysis
7. Research Gaps and Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASSDL | Attention based semi-supervised dictionary learning |
DBN | Deep belief network |
GCN | Graph convolutional networks |
ROI | Regions of interest |
AAL | Anatomical automatic labeling |
rs-fMRI | Resting-state fMRI |
PC | Personal characteristic |
MISO-DNN | Multi-input single-output deep neural network |
ADOS-2 | Autism diagnostic observation schedule, second edition |
BLSTM | Bidirectional long short-term memory |
ADI-R | Autism diagnostic interview, revised |
BeDevel-I | Behavior development screening for toddlers interview |
BeDevel-P | Behavior development screening for toddlers play |
K-CARS | Korean version of the childhood autism rating scale |
SCQ | Social communication questionnaire |
SRS | Social responsiveness scale |
QCHAT | Quantitative checklist for autism in toddlers |
DANN | Multichannel deep attention neural network |
DNN | Deep neural network |
DEAF | Deep extreme adaptive fuzzy |
RAPID | Real-time analysis of precursors for intervention and detection |
MTFS | Multi-task feature selection |
eGeMAPS | Geneva minimalistic acoustic parameter set |
MMSDAE | Multimodal stacked denoising autoencoder |
DFC | Dynamic functional connectivity |
SC-CNN | Separated channel convolutional neural network |
CAE | Convolutional autoencoder |
RSFC | Resting-state functional connectivity |
DeepMNF | Deep multimodal neuroimaging framework |
maLRR | multi-site adaption framework via low-rank representation |
AAL | Anatomical automatic labeling |
PRISMA | Preferred reporting items for systematic reviews and meta-analyses |
ABIDE | Autism brain imaging data exchange |
References
- Bjørklund, G.; Pivina, L.; Dadar, M.; Meguid, N.A.; Semenova, Y.; Anwar, M.; Chirumbolo, S. Gastrointestinal alterations in autism spectrum disorder: What do we know? Neurosci. Biobehav. Rev. 2020, 118, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.; Fewster, D.L.; Gurayah, T. Parents’ voices: Experiences and coping as a parent of a child with autism spectrum disorder. S. Afr. J. Occup. Ther. 2019, 49, 43–50. [Google Scholar] [CrossRef]
- Wiśniowiecka-Kowalnik, B.; Nowakowska, B.A. Genetics and epigenetics of autism spectrum disorder—Current evidence in the field. J. Appl. Genet. 2019, 60, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, C.P.; Betancur, C.; Yuen, R.K.; Parr, J.R.; Skuse, D.H.; Gallagher, L.; Bernier, R.A.; Buchanan, J.A.; Buxbaum, J.D.; Chen, C.A.; et al. A framework for an evidence-based gene list relevant to autism spectrum disorder. Nat. Rev. Genet. 2020, 21, 367–376. [Google Scholar] [CrossRef]
- Kong, C.; Chen, A.; Ludyga, S.; Herold, F.; Healy, S.; Zhao, M.; Taylor, A.; Müller, N.G.; Kramer, A.F.; Chen, S.; et al. Associations between meeting 24-hour movement guidelines and quality of life among children and adolescents with autism spectrum disorder. J. Sport Health Sci. 2023, 12, 73–86. [Google Scholar] [CrossRef]
- Tomczak, M.T. How can the work environment be redesigned to enhance the well-being of individuals with autism? Empl. Relat. Int. J. 2022, 44, 1467–1484. [Google Scholar] [CrossRef]
- Singh, D.; Rakhra, M.; Aggarwal, S. Autism Spectrum Disorder Detection using theDeep Learning Approaches. In Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 10–12 October 2022; pp. 761–766. [Google Scholar]
- Yen, C.; Chiang, M.C. Examining the effect of online advertisement cues on human responses using eye-tracking, EEG, and MRI. Behav. Brain Res. 2021, 402, 113128. [Google Scholar] [CrossRef]
- Khodatars, M.; Shoeibi, A.; Sadeghi, D.; Ghaasemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Zare, A.; Kong, Y.; et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Comput. Biol. Med. 2021, 139, 104949. [Google Scholar] [CrossRef]
- Albahri, A.S.; Al-Qaysi, Z.T.; Alzubaidi, L.; Alnoor, A.; Albahri, O.S.; Alamoodi, A.H.; Bakar, A.A. A systematic review of using deep learning technology in the steady-state visually evoked potential-based brain-computer interface applications: Current trends and future trust methodology. Int. J. Telemed. Appl. 2023, 2023, 7741735. [Google Scholar] [CrossRef]
- Zwaigenbaum, L.; Brian, J.A.; Ip, A. Early detection for autism spectrum disorder in young children. Paediatr. Child Health 2019, 24, 424–432. [Google Scholar] [CrossRef]
- McCarty, P.; Frye, R.E. Early detection and diagnosis of autism spectrum disorder: Why is it so difficult? Semin. Pediatr. Neurol. 2020, 35, 100831. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Li, X.; Hu, L.; Lu, L. Integrating genomic and resting State fMRI for efficient autism spectrum disorder classification. Multimed. Tools Appl. 2022, 81, 19183–19194. [Google Scholar] [CrossRef]
- Moridian, P.; Ghassemi, N.; Jafari, M.; Salloum-Asfar, S.; Sadeghi, D.; Khodatars, M.; Shoeibi, A.; Khosravi, A.; Ling, S.H.; Subasi, A.; et al. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front. Mol. Neurosci. 2022, 15, 999605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.L.; Wang, S.H.; Liu, W.B.; Zhu, H.L.; Li, M.; Zou, X.B. A multimodal machine learning system in early screening for toddlers with autism spectrum disorders based on the response to name. Front. Psychiatry 2023, 14, 1039293. [Google Scholar] [CrossRef]
- Mohanty, A.S.; Parida, P.; Patra, K.C. Usage of ML Techniques for ASD Detection: A Comparative Analysis of Various Classifiers. In Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications; CRC Press: Boca Raton, FL, USA, 2022; pp. 91–112. [Google Scholar]
- Kaur, P.; Kaur, A. Review of progress in diagnostic studies of autism spectrum disorder using neuroimaging. Interdiscip. Sci. Comput. Life Sci. 2023, 15, 111–130. [Google Scholar] [CrossRef]
- Kohli, M.; Kar, A.K.; Sinha, S. The role of intelligent technologies in early detection of autism spectrum disorder (asd): A scoping review. IEEE Access 2022, 10, 104887–104913. [Google Scholar] [CrossRef]
- Dawson, G.; Bernier, R. A quarter century of progress on the early detection and treatment of autism spectrum disorder. Dev. Psychopathol. 2013, 25, 1455–1472. [Google Scholar] [CrossRef]
- Sundas, A.; Badotra, S.; Rani, S.; Gyaang, R. Evaluation of autism spectrum disorder based on the healthcare by using artificial intelligence strategies. J. Sens. 2023, 2023, 5382375. [Google Scholar] [CrossRef]
- de Belen RA, J.; Bednarz, T.; Sowmya, A.; Del Favero, D. Computer vision in autism spectrum disorder research: A systematic review of published studies from 2009 to 2019. Transl. Psychiatry 2020, 10, 333. [Google Scholar] [CrossRef]
- Feng, W.; Liu, G.; Zeng, K.; Zeng, M.; Liu, Y. A review of methods for classification and recognition of ASD using fMRI data. J. Neurosci. Methods 2022, 368, 109456. [Google Scholar] [CrossRef]
- Haweel, R.; Shalaby, A.; Mahmoud, A.; Seada, N.; Ghoniemy, S.; Ghazal, M.; Casanova, M.F.; Barnes, G.N.; El Baz, A. A robust DWT–CNN-based CAD system for early diagnosis of autism using task-based fMRI. Med. Phys. 2021, 48, 2315–2326. [Google Scholar] [CrossRef]
- Li Ming Tang, D.; Zeng, J.; Zhou, T.; Zhu, H.; Chen, B.; Zou, X. An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder. Comput. Speech Lang. 2019, 56, 80–94. [Google Scholar]
- Yang, M.; Zhong, Q.; Chen, L.; Huang, F.; Lei, B. Attention based semi-supervised dictionary learning for diagnosis of autism spectrum disorders. In Proceedings of the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shanghai, China, 8–12 July 2019; pp. 7–12. [Google Scholar]
- Huang, Z.A.; Zhu, Z.; Yau, C.H.; Tan, K.C. Identifying autism spectrum disorder from resting-state fMRI using deep belief network. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2847–2861. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Liu, J.; Shi, M.; Wong, C.W.; Chan KH, K. Identifying autism spectrum disorder based on individual-aware down-sampling and multi-modal learning. arXiv 2021, arXiv:2109.09129. [Google Scholar]
- Niu, K.; Guo, J.; Pan, Y.; Gao, X.; Peng, X.; Li, N.; Li, H. Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data. Complexity 2020, 2020, 1357853. [Google Scholar] [CrossRef]
- Ahmed, Z.A.; Aldhyani, T.H.; Jadhav, M.E.; Alzahrani, M.Y.; Alzahrani, M.E.; Althobaiti, M.M.; Alassery, F.; Alshaflut, A.; Alzahrani, N.M.; Al-Madani, A.M. Facial features detection system to identify children with autism spectrum disorder: Deep learning models. Comput. Math. Methods Med. 2022, 2022, 3941049. [Google Scholar] [CrossRef]
- Saputra DC, E.; Maulana, Y.; Win, T.A.; Phann, R.; Caesarendra, W. Implementation of Machine Learning and Deep Learning Models Based on Structural MRI for Identification of Autism Spectrum Disorder. JurnalIlmiah Tek. ElektroKomputer Dan Inform. (JITEKI) 2023, 9, 307–318. [Google Scholar]
- Liao, M.; Duan, H.; Wang, G. Application of machine learning techniques to detect the children with autism spectrum disorder. J. Healthc. Eng. 2022, 2022, 9340027. [Google Scholar] [CrossRef]
- Sharif, H.; Khan, R.A. A novel machine learning based framework for detection of autism spectrum disorder (ASD). Appl. Artif. Intell. 2022, 36, 2004655. [Google Scholar] [CrossRef]
- Epalle, T.M.; Song, Y.; Liu, Z.; Lu, H. Multi-atlas classification of autism spectrum disorder with hinge loss trained deep architectures: ABIDE I results. Appl. Soft Comput. 2021, 107, 107375. [Google Scholar] [CrossRef]
- Ke, F.; Choi, S.; Kang, Y.H.; Cheon, K.A.; Lee, S.W. Exploring the structural and strategic bases of autism spectrum disorders with deep learning. IEEE Access 2020, 8, 153341–153352. [Google Scholar] [CrossRef]
- Almuqhim, F.; Saeed, F. ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Front. Comput. Neurosci. 2021, 15, 654315. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, G.W.; Bong, G.; Yoo, H.J.; Kim, H.K. Deep-learning-based detection of infants with autism spectrum disorder using auto-encoder feature representation. Sensors 2020, 20, 6762. [Google Scholar] [CrossRef] [PubMed]
- Mujeeb Rahman, K.K.; Monica Subashini, M. A deep neural network-based model for screening autism spectrum disorder using the quantitative checklist for autism in toddlers (QCHAT). J. Autism Dev. Disord. 2022, 52, 2732–2746. [Google Scholar] [CrossRef] [PubMed]
- Saranya, A.; Anandan, R. FIGS-DEAF: An novel implementation of hybrid deep learning algorithm to predict autism spectrum disorders using facial fused gait features. Distrib. Parallel Databases 2022, 40, 753–778. [Google Scholar] [CrossRef]
- Shao, L.; Fu, C.; You, Y.; Fu, D. Classification of ASD based on fMRI data with deep learning. Cogn. Neurodyn. 2021, 15, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Rashid, J.; Faheem, M.; Akram, A.; Khan, N.A.; Amin, R. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks. Healthc. Technol. Lett. 2024, 1–13. [Google Scholar] [CrossRef]
- Subah, F.Z.; Deb, K.; Dhar, P.K.; Koshiba, T. A deep learning approach to predict autism spectrum disorder using multisite resting-state fMRI. Appl. Sci. 2021, 11, 3636. [Google Scholar] [CrossRef]
- Tang, M.; Kumar, P.; Chen, H.; Shrivastava, A. Deep multimodal learning for the diagnosis of autism spectrum disorder. J. Imaging 2020, 6, 47. [Google Scholar] [CrossRef]
- Han, J.; Jiang, G.; Ouyang, G.; Li, X. A multimodal approach for identifying autism spectrum disorders in children. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2003–2011. [Google Scholar] [CrossRef]
- Kong, Y.; Gao, J.; Xu, Y.; Pan, Y.; Wang, J.; Liu, J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 2019, 324, 63–68. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Y.; Lan, W.; Guo, R.; Wang, Y.; Wang, J. Improved ASD classification using dynamic functional connectivity and multi-task feature selection. Pattern Recognit. Lett. 2020, 138, 82–87. [Google Scholar] [CrossRef]
- Arya, D.; Olij, R.; Gupta, D.K.; El Gazzar, A.; Wingen, G.; Worring, M.; Thomas, R.M. Fusing structural and functional MRIs using graph convolutional networks for autism classification. In Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR, Montreal, QC, Canada, 6–8 July 2020; pp. 44–61. [Google Scholar]
- Eslami, T.; Mirjalili, V.; Fong, A.; Laird, A.R.; Saeed, F. ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data. Front. Neuroinform. 2019, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, C.; Li, P.; Peng, Y.; Kang, X.; Jiang, C.; Li, F.; Zhu, X.; Yao, D.; Biswal, B.; et al. Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset. Entropy 2020, 22, 893. [Google Scholar] [CrossRef]
- Mujeeb Rahman, K.K.; Subashini, M.M. Identification of autism in children using static facial features and deep neural networks. Brain Sci. 2022, 12, 94. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Huang, J.; Yap, P.T.; Shen, D.; Liu, M. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation. IEEE Trans. Med. Imaging 2019, 39, 644–655. [Google Scholar] [CrossRef]
- Baygin, M.; Dogan, S.; Tuncer, T.; Barua, P.D.; Faust, O.; Arunkumar, N.; Abdulhay, E.W.; Palmer, E.E.; Acharya, U.R. Automated ASD detection using hybrid deep lightweight features extracted from EEG signals. Comput. Biol. Med. 2021, 134, 104548. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, D.; Tang, Y.; Zhang, L. Children ASD evaluation through joint analysis of EEG and eye-tracking recordings with graph convolution network. Front. Hum. Neurosci. 2021, 15, 651349. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Z.; Wang, B.; Wu, J. Identification of autism based on SVM-RFE and stacked sparse auto-encoder. IEEE Access 2019, 7, 118030–118036. [Google Scholar] [CrossRef]
- Abbas, S.Q.; Chi, L.; Chen YP, P. DeepMNF: Deep Multimodal Neuroimaging Framework for Diagnosing Autism Spectrum Disorder. Artif. Intell. Med. 2023, 136, 102475. [Google Scholar] [CrossRef]
- Rakhimberdina, Z.; Liu, X.; Murata, T. Population graph-based multi-model ensemble method for diagnosing autism spectrum disorder. Sensors 2020, 20, 6001. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Wu, F.X. Diagnosis of autism spectrum disorder with convolutional autoencoder and structural MRI images. In Neural Engineering Techniques for Autism Spectrum Disorder; Academic Press: Cambridge, MA, USA, 2021; pp. 23–38. [Google Scholar]
- Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, U.R.; Khosrowabadi, R.; Salari, V. Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 2020, 13, 1325. [Google Scholar] [CrossRef] [PubMed]
Author | Model Used | Feature Used | Accuracy | Modality Used |
---|---|---|---|---|
Ming Li [24] | CNN+RNN | Open SMILE and CQT spectrogram | 88.1% | Behavior signal, speech |
Yang et al. [25] | ASSDL | Neuroimaging | 98.2% | fMRI |
Huang et al. [26] | DBN | Graph-based feature selection (GBFS) | 76.4% | fMRI from ABIDE |
Pan et al. [27] | GCN | Brain imaging | 87.62% | fMRI from ABIDE I |
Niu et al. [28] | DANN | Multi scale brain functional connectom | 73.2% | rs-fMRI and PC data from ABIDE |
Ahmed et al. [29] | Mobile Net Xception InceptionV3 | Facial features | 95% 94% 89% | Facial images |
Saputra et al. [30] | CNN | rs-fMRI and task-fMRI BOLD signals, and aberrations in brain disorders | 89.58% | Brain MRI, clinical and behavioural markers, electroencephalography indices |
Liao et al. [31] | CNN | Features fusion | 87.50% | Eye fixation, facial expression, and EEG |
Sharif, and Khan, [32] | CNN | Corpuscallosum | 55.93% | Neuroimaging data, EEG, speech, Kinesthetic |
Epalle et al. [33] | MISO-DNN | Features fusion | 79.13% | MRI |
Ke et al. [34] | 2D/3D CNN | Spatial transformer network (STN) and classification activation mapping (CAM) | 89% | MRI |
Almuqhim and Saeed, [35] | ASD-SAENet | Sparse autoencoder (SAE) | 70.8% | fMRI |
Lee et al. [36] | BLSTM | eGeMAPS speech feature | 68.18% | ADOS-2, ADI-R, BeDevel-I, BeDevel-P, K-CARS, SCQ, and SRS |
Rahman and Subashini [37] | DNN | Feature fusion | 97.18% | QCHAT and QCHAT-10 |
Saranya and Anandan, [38] | DEAF | Multimodal features | 96.5 | Facial fusion emotions and human gait sequences |
Shao et al. [39] | GCN | Deep features | 79.5% | fMRI from ABIDE |
Israr Ahmad [40] | ResNet50 | Facial Features | 92% | Facial Images |
Subah et al. [41] | DNN | Brain atlases | 88% | rs-fMRI |
Tang et al. [42] | Deep multimodal model | fMRI scan and ROI signal intensities | 74% | fMRI |
Han et al. [43] | MMSDAE | Feature fusion | 95.56% | EEG and ET |
Kong et al. [44] | DNN | Individual brain network with connectivity features between pairs of ROIs | 90.39% | MRI from ABIDE I |
Liu et al., 2020 [45] | DFC | MTFS | 76.8% | fMRI from ABIDE I |
Arya et al. [46] | 3D CNN-GCN model | Feature fusion | 64.23% | rs-fMRI |
Eslami et al. [47] | ASD-DiagNet | Correlated and anticorrelated connections of the brain | 70.3% | fMRI from ABIDE-I |
Zhang et al. [48] | SC-CNN | Temporal feature | 68.6% | Re-fMRI |
Rahman and Subashini, [49] | MobileNet Xception EfficientNet B0 EfficientNet B1 EfficientNet B2 | Static facial features | 92.81%, 96.63%, 93.38%, 95.06%, 94.31% | Face photos |
Wang et al. [50] | maLRR | AAL | 74.62% | fMRI |
Baygin et al. [51] | Hybrid Lightweight Deep Feature Generation (MobileNetV2, ShuffleNet, SqueezeNet) | Deep feature | 96.44% | EEG |
Zhang et al. [52] | GCN | Deepfusion | 95% | EEG |
Wang et al. [53] | DL with SVM-RFE | Feature self-taught learning network | 93.59% | rs-fMRI |
Haweel et al. [23] | CNN | Speech task facial features | 80% | sMRI, TfMRI and rs-fMRI |
Abbas et al. [54] | DeepMNF | Spatio temporal features | 75% | rs-fMRI and sMRI |
Rakhimberdina Z, Liu, and Murata [55] | Graph-based multi-model ensemble | RSFC and phenotypic features | 73.13% | fMRI from ABIDE |
Mostafa and Wu [56] | CAE | Lines, shapes, specific objects | 96.2% | T1-weighted MRI, rs-fMRI |
Sherkatghanad et al. [57] | CNN | Connectomes | 70.22% | rs-fMRI from ABIDE |
Neuroimaging | |
Functional Magnetic Resonance Imaging (fMRI) |
|
Electroencephalography (EEG) |
|
Electromyography (EMG) |
|
Non-Neuroimaging | |
Eye-Tracking (ET) |
|
Speech and Language Analysis |
|
Behavioral Data |
|
Genetic Data |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dcouto, S.S.; Pradeepkandhasamy, J. Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges. Eng. Proc. 2023, 59, 205. https://doi.org/10.3390/engproc2023059205
Dcouto SS, Pradeepkandhasamy J. Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges. Engineering Proceedings. 2023; 59(1):205. https://doi.org/10.3390/engproc2023059205
Chicago/Turabian StyleDcouto, Sheril Sophia, and Jawahar Pradeepkandhasamy. 2023. "Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges" Engineering Proceedings 59, no. 1: 205. https://doi.org/10.3390/engproc2023059205
APA StyleDcouto, S. S., & Pradeepkandhasamy, J. (2023). Multimodal Deep Learning in Early Autism Detection—Recent Advances and Challenges. Engineering Proceedings, 59(1), 205. https://doi.org/10.3390/engproc2023059205