Characterization and Removal Efficiency Analysis of MWCNT/Clay Nanocomposites for MB Dye Adsorption †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MB Dye Standard Solution
2.2. Preparation of MWCNT/Clay Nanocomposite
2.3. Adsorption Isotherm
2.4. Characterization of MWCNT/Clay Nanocomposites
3. Result and Discussion
3.1. Characterization of MWCNT/Clay Nanocomposites
3.1.1. FESEM Analysis
3.1.2. TEM Analysis
3.1.3. EDX Analysis
3.1.4. TGA Analysis
3.1.5. XRD Analysis
3.2. Effect of Weight of MWCNT/Clay Nanocomposites on Adsorption
3.3. Effect of Various Concentrations of MB Dye
3.4. Effect of Temperature
3.5. Effect of pH Solution
3.6. Comparative Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aljeboree, A.M.; Alkaim, A.F. Activated carbon (as a waste plant sources)-clay micro/nanocomposite as effective adsorbent: Process optimization for ultrasound-assisted adsorption removal of amoxicillin drug. Plant Arch. 2019, 19, 915–919. [Google Scholar]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef]
- Iwasaki, T. Simple and Rapid Synthesis of Organically Modified Natural Acid Clay for the Adsorption of Anionic and Cationic Dyes. Minerals 2023, 13, 41. [Google Scholar] [CrossRef]
- Alwan, N.A.; Kadam, Z.M. Preparing and diagnosing the biological activity of some metallic complexes with ligand 4-Benzophenol Azopyrogallol (4). IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012029. [Google Scholar] [CrossRef]
- WWalli, H.A.; Abed, S.A.; Hossain, L.I.; Kadam, Z.M. Water quality assessment of some rivers in Al-Qadisiyah province, middle euphrates/Iraq. J. Glob. Pharma Technol. 2018, 10, 883–891. [Google Scholar]
- Abid Alradaa, Z.A.; Kadam, Z.M. Preparation, Characterization and Prevention Biological pollution of 4 (4-Benzophenylazo) Pyrogallol and their Metal Complexes. IOP Conf. Ser. Earth Environ. Sci. 2021, 790, 012038. [Google Scholar] [CrossRef]
- Moradi, O.; Yari, M.; Zare, K.; Mirza, B.; Najafi, F. Carbon nanotubes: A review of chemistry principles and reactions. Fullerenes Nanotub. Carbon Nanostruct. 2012, 20, 138–151. [Google Scholar] [CrossRef]
- Alqaragully, M.B.; AL-Gubury, H.Y.; Aljeboree, A.M.; Karam, F.F.; Alkaim, A.F. Monoethanolamine: Production plant. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1287–1296. [Google Scholar]
- Alkaim, A.F.; Ajobree, A.M. White marble as an alternative surface for removal of toxic dyes (Methylene blue) from Aqueous solutions. Int. J. Adv. Sci. Technol. 2020, 29, 5470–5479. [Google Scholar]
- El Shafey, A.M.; Abdel-Latif, M.K.; Abd El-Salam, H.M. The facile synthesis of poly(acrylate/acrylamide) titanium dioxide nanocomposite for groundwater ammonia removal. Desalin. Water Treat. 2021, 212, 61–70. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Yazidi A Atrous, M.E.S.; Lotfi, F.S.; Suryadi, S.E.; Petriciolet, A.B.; Guilherme, L.D.; Abdelmottaleb, B.L. Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem. Eng. J. 2020, 379, 122320. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Seliem, M.K.; Lima, E.C.; Badawi, M.; Li, Z.; Bonilla-Petriciolet, A.; Anastopoulos, I. Outstanding Performance of a New Exfoliated Clay Impregnated with Rutile TiO2 Nanoparticles Composite for Dyes Adsorption: Experimental and Theoretical Studies. Coatings 2022, 12, 22. [Google Scholar] [CrossRef]
- Kahlol, M.K.; Mashkoor, M.S. Procaine as a new coupling agent for the spectrophotometric determination of fibrates by diazotization coupling reaction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 571, 012084. [Google Scholar] [CrossRef]
- Khedaer, Z.; Ahmed, D.; Al-Jawad, S. Investigation of Morphological, Optical, and Antibacterial Properties of Hybrid ZnO-MWCNT Prepared by Sol-gel. J. Appl. Sci. Nanotechnol. 2021, 1, 66–77. [Google Scholar] [CrossRef]
- Saif, M. Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 2020, 228, 54–62. [Google Scholar]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Sivaranjani, K.; Sivakumar, S.; Dharmaraja, J. Enhancement Photocatalytic Activity of Mn Doped CdS/ZnO Nanocomposites for the Degradation of Methylene Blue under Solar Light Irradiation. Adv. Mater. Sci. 2022, 22, 28–48. [Google Scholar] [CrossRef]
- Thakur, S.; Chaudhary, J.; Thakur, A.; Gunduz, O.; Alsanie, W.F.; Makatsoris, C.; Thakur, V.K. Highly efficient poly(acrylic acid-co-aniline) grafted itaconic acid hydrogel: Application in water retention and adsorption of rhodamine B dye for a sustainable environment. Chemosphere 2022, 303, 134917. [Google Scholar] [CrossRef]
- Aljeboree, A.; Essa, S.; Kadam, Z.; Dawood, F.; Falah, D.; Ayad, A. Environmentally Friendly Activated Carbon Derived from Palm Leaf for the Removal of Toxic Reactive Green Dye. Int. J. Pharm. Qual. Assur. 2023, 14, 12–15. [Google Scholar] [CrossRef]
- Pashaei-Fakhri, S.; Peighambardoust, S.J.; Foroutan, R.; Arsalani, N.; Ramavandi, B. Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 2021, 270, 129419. [Google Scholar] [CrossRef]
- Al-Mashhadani, Z.I.; Aljeboree, A.M.; Radia, N.D.; Alkadir, O.K.A. Antibiotics Removal by Adsorption onto Eco-friendly Surface: Characterization and Kinetic Study. Int. J. Pharm. Qual. Assur. 2021, 12, 252–255. [Google Scholar]
- Radia, N.D.; Kamona, S.M.H.; Jasem, H.; Abass, R.R.; Izzat, S.E.; Ali, M.S.; Ghafel, S.T.; AM, A. Role of Hydrogel and Study of its High-Efficiency to Removal Streptomycin drug from Aqueous Solutions. Int. J. Pharm. Qual. Assur. 2022, 13, 160–163. [Google Scholar]
- Abd, I.K.; Abdulrazzak, F.H.; Khodair, Z.T. Synthesis of MWCNTs from methanol/butanol mixture by catalytic chemical vapor deposition and application to synthesized dye sensitizer solar cell. AIP Conf. Proc. 2020, 2213, 020318. [Google Scholar]
- Ullah, S.; Ur Rahman, A.; Ullah, F.; Rashid, A.; Arshad, T.; Viglašová, E.; Galamboš, M.; Mahmoodi, N.M.; Ullah, H. Adsorption of Malachite Green Dye onto Mesoporous Natural Inorganic Clays: Their Equilibrium Isotherm and Kinetics Studies. Water 2021, 13, 965. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; González, S.; Jaramillo, H.A.; Medina, F. Synthesis of the ZnTiO3/TiO2 Nanocomposite Supported in Ecuadorian Clays for the Adsorption and Photocatalytic Removal of Methylene Blue Dye. Nanomaterials 2020, 10, 1891. [Google Scholar] [CrossRef]
- Abdulsada, G.J.; Kadam, Z.M. Improvement the Chemical Structure, Optical and Magnetic Properties of CuFe2O4 Thin Films. ARPN J. Eng. Appl. Sci. 2019, 14, 10251–10255. [Google Scholar] [CrossRef]
- Aljeboree, A.M.; Alshirifi, A.N.; Alkaim, A.F. Removal of pharmaceutical amoxicillin drug by using (Cnt) decorated clay/Fe2O3 micro/nanocomposite as effective adsorbent: Process optimization for ultrasound-assisted adsorption. Int. J. Pharm. Res. 2019, 11, 80–86. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrazzak, F.H.; Aljeboree, A.M.; Naser, D.K.; Dawood, A.H.; Ramadan, M.F.; Alkaim, A.F. Characterization and Removal Efficiency Analysis of MWCNT/Clay Nanocomposites for MB Dye Adsorption. Eng. Proc. 2023, 59, 220. https://doi.org/10.3390/engproc2023059220
Abdulrazzak FH, Aljeboree AM, Naser DK, Dawood AH, Ramadan MF, Alkaim AF. Characterization and Removal Efficiency Analysis of MWCNT/Clay Nanocomposites for MB Dye Adsorption. Engineering Proceedings. 2023; 59(1):220. https://doi.org/10.3390/engproc2023059220
Chicago/Turabian StyleAbdulrazzak, Firas H., Aseel M. Aljeboree, Dalya K. Naser, Ashour H. Dawood, Montather F. Ramadan, and Ayad F. Alkaim. 2023. "Characterization and Removal Efficiency Analysis of MWCNT/Clay Nanocomposites for MB Dye Adsorption" Engineering Proceedings 59, no. 1: 220. https://doi.org/10.3390/engproc2023059220
APA StyleAbdulrazzak, F. H., Aljeboree, A. M., Naser, D. K., Dawood, A. H., Ramadan, M. F., & Alkaim, A. F. (2023). Characterization and Removal Efficiency Analysis of MWCNT/Clay Nanocomposites for MB Dye Adsorption. Engineering Proceedings, 59(1), 220. https://doi.org/10.3390/engproc2023059220