Enhancing Skin Disease Segmentation with Weighted Ensemble Region-Based Convolutional Network †
Abstract
:1. Introduction
- This study contributes to the advancement of automated skin disease diagnosis by utilizing state-of-the-art deep learning techniques.
- The proposed weighted average ensemble approach, which combines the outputs of multiple Mask R-CNN models and this ensemble strategy, capitalizes on the diverse strengths of individual models, resulting in improved segmentation performance and robustness across different skin diseases and variations.
- The proposed ensemble methodology can be easily extended to incorporate new models or adapt to diverse datasets. Its versatility makes it applicable to various clinical scenarios, providing a flexible solution for accurate skin disease segmentation.
2. Literature Survey
3. Materials and Methods/Methodology
3.1. Preprocessing
3.2. Skin Image Segmentation Using WERCNN
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aaqib, M.; Ghani, M.; Khan, A. Deep Learning-Based Identification of Skin Cancer on Any Suspicious Lesion. In Proceedings of the 2023 4th International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 17–18 March 2023; pp. 1–6. [Google Scholar]
- Liao, Y.H.; Chang, P.C.; Wang, C.C.; Li, H.H. An Optimization-Based Technology Applied for Face Skin Symptom Detection. Healthcare 2022, 10, 2396. [Google Scholar] [CrossRef] [PubMed]
- Mekhalfi, M.L.; Nicolò, C.; Bazi, Y.; Al Rahhal, M.M.; Al Maghayreh, E. Detecting crop circles in google earth images with mask R-CNN and YOLOv3. Appl. Sci. 2021, 11, 2238. [Google Scholar] [CrossRef]
- Zafar, M.; Sharif, M.I.; Sharif, M.I.; Kadry, S.; Bukhari, S.A.C.; Rauf, H.T. Skin lesion analysis and cancer detection based on machine/deep learning techniques: A comprehensive survey. Life 2023, 13, 146. [Google Scholar] [CrossRef]
- Virupakshappa, A. Diagnosis of melanoma with region and contour based feature extraction and KNN classification. Int. J. Innov. Sci. Eng. Res. 2021, 8, 157–164. [Google Scholar]
- Naeem, A.; Anees, T.; Fiza, M.; Naqvi, R.A.; Lee, S.W. SCDNet: A Deep Learning-Based Framework for the Multiclassification of Skin Cancer Using Dermoscopy Images. Sensors 2022, 22, 5652. [Google Scholar] [CrossRef]
- Leite, M.; Parreira, W.D.; Fernandes, A.M.D.R.; Leithardt, V.R.Q. Image Segmentation for Human Skin Detection. Appl. Sci. 2022, 12, 12140. [Google Scholar] [CrossRef]
- Rout, R.; Parida, P.; Dash, S. Automatic Skin Lesion Segmentation using a Hybrid Deep Learning Network. Network 2023, 15, 238–249. [Google Scholar]
- Maknuna, L.; Kim, H.; Lee, Y.; Choi, Y.; Kim, H.; Yi, M.; Kang, H.W. Automated structural analysis and quantitative characterization of scar tissue using machine learning. Diagnostics 2022, 12, 534. [Google Scholar] [CrossRef]
- Khan, M.; Akram, T.; Zhang, Y.; Sharif, M. Attributes based Skin Lesion Detection and Recognition: A Mask RCNN and Transfer Learning-based Deep Learning Framework. Pattern Recognit. Lett. 2021, 143, 58–66. [Google Scholar] [CrossRef]
- Khouloud, S.; Ahlem, M.; Fadel, T.; Amel, S. W-net and inception residual network for skin lesion segmentation and classification. Appl. Intell. 2022, 52, 3976–3994. [Google Scholar] [CrossRef]
- Samanta, P.K.; Rout, N.K. Skin lesion classification using deep convolutional neural network and transfer learning approach. In Advances in Smart Communication Technology and Information Processing: OPTRONIX; Springer: Berlin/Heidelberg, Germany, 2020; pp. 327–335. [Google Scholar]
- Cao, X.; Pan, J.S.; Wang, Z.; Sun, Z.; Haq, A.; Deng, W.; Yang, S. Application of generated mask method based on Mask R-CNN in classification and detection of melanoma. Comput. Methods Programs Biomed. 2021, 207, 106174. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, A.; Purnama, S.R.; Wirawan, P.W.; Rasyidi, H. Lightweight encoder-decoder model for automatic skin lesion segmentation. Inform. Med. Unlocked 2021, 25, 100640. [Google Scholar] [CrossRef]
- Anand, V.; Gupta, S.; Gupta, D.; Gulzar, Y.; Xin, Q.; Juneja, S.; Shah, A.; Shaikh, A. Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images. Diagnostics 2023, 13, 1320. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V. Attention cost-sensitive deep learning-based approach for skin cancer detection and classification. Cancers 2022, 14, 5872. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Zhang, P.; Jiang, T.; She, J.; Shen, X.; Xu, P.; Zhao, W.; Gao, G.; Guan, Z. Lesion segmentation framework based on convolutional neural networks with dual attention mechanism. Electronics 2021, 10, 3103. [Google Scholar] [CrossRef]
- Bagheri, F.; Tarokh, M.J.; Ziaratban, M. Skin lesion segmentation from dermoscopic images by using Mask R-CNN, Retina-Deeplab, and graph-based methods. Biomed. Signal Process. Control 2021, 67, 102533. [Google Scholar] [CrossRef]
- Ahmed, I.; Jeon, G.; Piccialli, F. A deep-learning-based smart healthcare system for patient’s discomfort detection at the edge of internet of things. IEEE Internet Things J. 2021, 8, 10318–10326. [Google Scholar] [CrossRef]
- Chompookham, T.; Surinta, O. Ensemble methods with deep convolutional neural networks for plant leaf recognition. ICIC Express Lett. 2021, 15, 553–565. [Google Scholar]
- Vasconcelos, F.F.X.; Medeiros, A.G.; Peixoto, S.A.; Reboucas Filho, P.P. Automatic skin lesions segmentation based on a new morphological approach via geodesic active contour. Cogn. Syst. Res. 2019, 55, 44–59. [Google Scholar] [CrossRef]
- Melbin, K.; Raj, Y.J.V. Integration of modified ABCD features and support vector machine for skin lesion types classification. Multimed. Tools Appl. 2021, 80, 8909–8929. [Google Scholar] [CrossRef]
- YacinSikkandar, M.; Alrasheadi, B.A.; Prakash, N.B.; Hemalakshmi, G.R.; Mohanarathinam, A.; Shankar, K. Deep learning based an automated skin lesion segmentation and intelligent classification model. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3245–3255. [Google Scholar] [CrossRef]
- Uplaonkar, D.S.; Patil, N. Ultrasound liver tumor segmentation using adaptively regularized kernel-based fuzzy C means with enhanced level set algorithm. Int. J. Intell. Comput. Cybern. 2021, 15, 438–453. [Google Scholar] [CrossRef]
- Virupakshappa; Amarapur, B. An improved segmentation approach using level set method with dynamic thresholding for tumor detection in MRI images. HELIX 2017, 7, 2059–2066. [Google Scholar]
- Goyal, M.; Oakley, A.; Bansal, P.; Dancey, D.; Yap, M.H. Skin Lesion Segmentation in Dermoscopic Images with Ensemble Deep Learning Methods. IEEE Access 2020, 8, 4171–4181. [Google Scholar] [CrossRef]
Methods | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|
CNN | 89.8% | 85.7% | 86.7% | 89.0% | 91.5% |
FrCN | 90.7% | 86.8% | 88.8% | 90.8% | 89.7% |
SVM | 87.7% | 90.8% | 82.7% | 84.7% | 88.1% |
ANFC | 88.4% | 87.9% | 83.8% | 85.7% | 89.1% |
WERCN | 94.7% | 93.6% | 93.9% | 92.6% | 93.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nirupama; Virupakshappa. Enhancing Skin Disease Segmentation with Weighted Ensemble Region-Based Convolutional Network. Eng. Proc. 2023, 59, 49. https://doi.org/10.3390/engproc2023059049
Nirupama, Virupakshappa. Enhancing Skin Disease Segmentation with Weighted Ensemble Region-Based Convolutional Network. Engineering Proceedings. 2023; 59(1):49. https://doi.org/10.3390/engproc2023059049
Chicago/Turabian StyleNirupama, and Virupakshappa. 2023. "Enhancing Skin Disease Segmentation with Weighted Ensemble Region-Based Convolutional Network" Engineering Proceedings 59, no. 1: 49. https://doi.org/10.3390/engproc2023059049
APA StyleNirupama, & Virupakshappa. (2023). Enhancing Skin Disease Segmentation with Weighted Ensemble Region-Based Convolutional Network. Engineering Proceedings, 59(1), 49. https://doi.org/10.3390/engproc2023059049