Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties †
Abstract
:1. Introduction
2. Materials and Methods Section
3. Experimental Process
4. Evaluation of Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seidelmann, K.; Bienasch, A.; Prohl, F. The impact of nest tube dimensions on reproduction parameters in a cavity-nesting solitary bee, Osmia bicornis (Hymenoptera: Megachilidae). Apidologie 2016, 47, 114–122. [Google Scholar] [CrossRef]
- Martínez-García, R.; de Rojas, M.S.; Jagadesh, P.; López-Gayarre, F.; Morán-Del-Pozo, J.M.; Juan-Valdes, A. Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar. Case Stud. Constr. Mater. 2022, 16, e01050. [Google Scholar] [CrossRef]
- Christman, K.; Shaw, R.; Hodsdon, L. The Bee Brick: Building habitat for solitary bees. Int. J. Sustain. Design 2022, 4, 285–304. [Google Scholar] [CrossRef]
- Minckley, R.L.; Danforth, B.N. Sources and frequency of brood loss in solitary bees. Apidologie 2019, 50, 515–525. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Palanisamy, J.; Voutetaki, M.E. Review of Out-of-Plane Strengthening Techniques of Unreinforced Masonry Walls. Fibers 2023, 11, 78. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Rousakis, T.C.; Achillopoulou, D.V.; Karabinis, A.I. Ultimate shear strength prediction model for unreinforced masonry retrofitted externally with textile reinforced mortar. Earthq. Struct. 2020, 9, 11–425. [Google Scholar]
- Thomoglou, A.K.; Karabinis, A.I. Experimental investigation of the shear strength of hollow brick unreinforced masonry walls retrofitted with TRM system. Earthq. Struct. 2022, 22, 355–372. [Google Scholar]
- Thomoglou, A.K.; Karabinis, A.I. Experimental investigation of shear strength of solid brick URM walls retrofitted with TRM jacket. In Proceedings of the 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 28–30 June 2021; pp. 4808–4815. [Google Scholar]
- Abdel Hafez, R.D.; Tayeh, B.A.; Abd-Al Ftah, R.O. Development and evaluation of green fired clay bricks using industrial and agricultural wastes. Case Stud. Constr. Mater. 2022, 17, e01391. [Google Scholar]
- EN 772-1 (2000); Methods of Test for Masonry Units. Part 1: Determination of Compressive Strength. CEN: Brussels, Belgium, 2000.
- BS EN 1052-3:2002; Methods of Test for Masonry—Part 3: Determination of Initial Shear Strength. BSI: London, UK, 2002.
- Thomoglou, A.K.; Falara, M.G.; Voutetaki, M.E.; Fantidis, J.G.; Tayeh, B.A.; Chalioris, C.E. Electromechanical properties of multi-reinforced self-sensing cement-based mortar with MWCNTs, CFs, and PPs. Constr. Build. Mater. 2023, 400, 132566. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Fantidis, J.G.; Voutetaki, M.E.; Metaxa, Z.S.; Chalioris, C.E. Mechanical Characterization of Nano-Reinforced Mortar: X-ray Micro-CT for 3D Imaging of Microstructure. Eng. Proc. 2023, 41, 4. [Google Scholar]
- Thomoglou, A.K.; Falara, M.G.; Gkountakou, F.I.; Elenas, A.; Chalioris, C.E. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties. Sensors 2023, 23, 2405. [Google Scholar] [CrossRef]
- Eurocode 6; Design of Masonry Structures, Part 1-1: General Rules for Building-Rules for Reinforced and Unreinforced Masonry. European Committee for Standardization. CEN: Brussels, Belgium, 2005.
- Thomoglou, A.K.; Karabini, M.A.; Achillopoulou, D.V.; Rousakis, T.C.; Chalioris, C.E. Failure Mode Prediction of Unreinforced Masonry (URM) Walls Retrofitted with Cementitious Textile Reinforced Mortar (TRM). Fibers 2023, 11, 53. [Google Scholar] [CrossRef]
- Thomoglou, A.K.; Falara, M.G.; Gkountakou, F.I.; Elenas, A.; Chalioris, C.E. Influence of Different Surfactants on Carbon Fiber Dispersion and the Mechanical Performance of Smart Piezoresistive Cementitious Composites. Fibers 2022, 10, 49. [Google Scholar] [CrossRef]
- Pilien, V.P.; Garciano, L.E.O.; Promentilla, M.A.B.; Guades, E.J.; Leaño, J.L.; Oreta, A.W.C.; Ongpeng, J.M.C. Banana Fiber-Reinforced Geopolymer-Based Textile-Reinforced Mortar. Eng. Proc. 2022, 17, 10. [Google Scholar]
- Jagadesh, P.; Ramachandramurthy, A.; Rajasulochana, P.; Hasan, M.A.; Murugesan, R.; Khan, A.H.; Magbool, H.M.; Khan, N.A. Effect of processed sugarcane bagasse ash on compressive strength of blended mortar and assessments using statistical modelling. Case Stud. Constr. Mater. 2023, 19, e02435. [Google Scholar] [CrossRef]
- Cadelano, G.; Stecchetti, N.; Bison, P.; Bortolin, A.; Facci, M.; Ferrarini, G.; Galgaro, A.; Rossi, S.; Di Sipio, E. Method for Quantitative Assessment of Moisture Content of Porous Building Materials Based on Measurement of Thermal Inertia with Active Infrared Thermography. Eng. Proc. 2023, 51, 19. [Google Scholar]
Vertical Bee Brick | Vtot mm3 | Vholes/Vtot % | Load N | A mm2 | σ (Ν/mm2) |
---|---|---|---|---|---|
BCV_1 | 2160.000 | 3.38 | 123,700.00 | 10,560.00 | 11.71 |
BCV_2 | 2147.400 | 3.40 | 125,200.00 | 10,660.00 | 11.74 |
BCV_3 | 2145.300 | 3.40 | 113,500.00 | 10,650.00 | 10.66 |
BCV_4 | 2124.510 | 3.43 | 123,500.00 | 10,551.00 | 11.71 |
BCV_5 | 2099.100 | 3.47 | 140,300.00 | 10,430.00 | 13.45 |
BCV_6 | 2105.400 | 3.46 | 133,300.00 | 10,460.00 | 12.74 |
Average | 2130.285 | 3.42 | 126,583.33 | 10,551.83 | 12.00 |
Lateral Bee Brick | Volume mm3 | Vholes/Vtot % | Load N | Area mm2 | σ (Ν/mm2) |
---|---|---|---|---|---|
BCL_1 | 2157.400 | 3.38 | 261,600.00 | 20,660.00 | 12.66 |
BCL_2 | 2145.300 | 3.40 | 255,600.00 | 20,550.00 | 12.44 |
BCL_3 | 2168.400 | 3.36 | 269,400.00 | 20,760.00 | 12.98 |
BCL_4 | 2162.900 | 3.37 | 273,200.00 | 20,710.00 | 13.19 |
BCL_5 | 2156.850 | 3.38 | 276,400.00 | 20,655.00 | 13.38 |
BCL_6 | 2145.300 | 3.40 | 273,900.00 | 20,550.00 | 13.33 |
Average | 2156.025 | 3.38 | 268,350.00 | 20,647.50 | 13.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomoglou, A.K.; Voutetaki, M.E.; Fantidis, J.G.; Chalioris, C.E. Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties. Eng. Proc. 2024, 60, 9. https://doi.org/10.3390/engproc2024060009
Thomoglou AK, Voutetaki ME, Fantidis JG, Chalioris CE. Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties. Engineering Proceedings. 2024; 60(1):9. https://doi.org/10.3390/engproc2024060009
Chicago/Turabian StyleThomoglou, Athanasia K., Maristella E. Voutetaki, Jacob G. Fantidis, and Constantin E. Chalioris. 2024. "Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties" Engineering Proceedings 60, no. 1: 9. https://doi.org/10.3390/engproc2024060009
APA StyleThomoglou, A. K., Voutetaki, M. E., Fantidis, J. G., & Chalioris, C. E. (2024). Novel Natural Bee Brick with a Low Energy Footprint for “Green” Masonry Walls: Mechanical Properties. Engineering Proceedings, 60(1), 9. https://doi.org/10.3390/engproc2024060009