Design and Optimization of the Aircraft’s Rear Fuselage for Predictive Fatigue Failure †
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, J.; Hugh, W. Durability and damage tolerance analysis methods for lightweight aircraft structures: Review and prospects. Int. J. Lightweight Mater. Manuf. 2022, 5, 224–250. [Google Scholar] [CrossRef]
- Abbishek, R.; Ravi Kumar, B.; Sankara Subramanian, H. Fatigue Analysis and Design Optimization of Aircraft’s Central Fuselage. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 012031. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L.; Parhi, D.R.; Mohamed, A. Droplet Distribution Effected by Multi-Rotor Flight Parameters. In Recent Trends in Product Design and Intelligent Manufacturing Systems; Deepak, B., Bahubalendruni, M.R., Parhi, D., Biswal, B.B., Eds.; Spinger: Singapore, 2023; pp. 231–240. [Google Scholar] [CrossRef]
- Karthick, B.; Balaji, S.; Maniiarasan, P. Structural Analysis of Fuselage with Lattice Structure. Int. J. Eng. Res. Technol. 2013, 2, 1909–1913. [Google Scholar]
- Chetan, B.S.; Narayana Swamy, G.; Girish, K.E. Fatigue Life Estimation of Rear Fuselage Structure of An Aircraft. Int. J. Res. Eng. Technol. 2015, 4, 347–354. [Google Scholar] [CrossRef]
- Leski, A. Improving the Accuracy of Fatigue Damage Calculations for Archived Data. Fatigue Aircr. Struct. 2020, 2019, 113–120. [Google Scholar] [CrossRef]
- Mohamed, A.; El-Madhoun, Y.; Bassim, M.N. The Effect of Tempering on Low Cycle Fatigue Behavior of Al2024. J. Mater. Process. Technol. 2005, 162, 362–366. [Google Scholar] [CrossRef]
- Gomes, G.; Oliveira, T.; Evangelista, F., Jr. A Probabilistic Approach in Fuselage Damage Analysis via Boundary Element Method. In Advances in Fatigue and Fracture Testing and Modelling; Abdallah, Z., Nada, A., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Ning, Y.; Xue, H.; Lei, X. Study on Health Monitoring and Fatigue Life Prediction of Aircraft Structures. Materials 2022, 15, 8606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, M.; Mohamed, A.; Deepak, B.B.V.L.; Woya, J. Design and Optimization of the Aircraft’s Rear Fuselage for Predictive Fatigue Failure. Eng. Proc. 2024, 66, 38. https://doi.org/10.3390/engproc2024066038
Mai M, Mohamed A, Deepak BBVL, Woya J. Design and Optimization of the Aircraft’s Rear Fuselage for Predictive Fatigue Failure. Engineering Proceedings. 2024; 66(1):38. https://doi.org/10.3390/engproc2024066038
Chicago/Turabian StyleMai, Malachi, Aezeden Mohamed, B. B. V. L. Deepak, and Jones Woya. 2024. "Design and Optimization of the Aircraft’s Rear Fuselage for Predictive Fatigue Failure" Engineering Proceedings 66, no. 1: 38. https://doi.org/10.3390/engproc2024066038
APA StyleMai, M., Mohamed, A., Deepak, B. B. V. L., & Woya, J. (2024). Design and Optimization of the Aircraft’s Rear Fuselage for Predictive Fatigue Failure. Engineering Proceedings, 66(1), 38. https://doi.org/10.3390/engproc2024066038