The Physicochemical Characterisation and Computational Studies of Tilapia Fish Scales as a Green Inhibitor for Steel Corrosion †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tilapia Fish Scale
2.2. Physicochemical Characterisation of Tilapia Fish Scales
2.2.1. X-ray Diffraction (XRD)
2.2.2. Fourier Transform Infra-Red (FTIR) Spectroscopy
2.2.3. Scanning Electron Microscope (SEM)
2.3. Quantum Chemical Studies
3. Results and Discussion
3.1. Results of the Physicochemical Characterisation of Tilapia Fish Scales
3.1.1. X-ray Diffraction (XRD)
3.1.2. Fourier Transform Infra-Red (FTIR)
3.1.3. Scanning Electron Microscope (SEM)
3.2. Quantum Chemical Analysis Results
= −0.2 hartee
= −615.23 kJ/mol
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FS: | Fish scale |
SEM: | Scanning electron microscope |
XRD: | X-ray diffractometer |
IR: | Infra-red |
FTIR: | Fourier transform infra-red |
LUMO: | Energy of the lowest occupied molecular orbital |
HOMO: | Energy of the highest occupied molecular orbital |
DFT: | Density functioning theory |
References
- Chinh, N.T.; Manh, V.Q.; Trung, V.Q.; Lam, T.D.; Huynh, M.D.; Tung, N.Q.; Trinh, N.D.; Hoang, T. Characterization of collagen derived from tropical freshwater carp fish scale wastes and its amino acid sequence. Nat. Prod. Commun. 2019, 14, 1934578X19866288. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Fisheries and Aquaculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Volume 2020, pp. 1–244. [Google Scholar]
- Lu, G.; Luo, M. Genomes of major fishes in world fisheries and aquaculture: Status, application and perspective. Aquac. Fish. 2020, 5, 163–173. [Google Scholar] [CrossRef]
- Coppola, D.; Lauritano, C.; Palma Esposito, F.; Riccio, G.; Rizzo, C.; de Pascale, D. Fish waste: From problem to valuable resource. Mar. Drugs 2021, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Tidwell, J.H.; Allan, G.L. Fish as food: Aquaculture’s contribution. EMBO Rep. 2001, 2, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Ying, L.; Zhang, Y. Monitoring the decalcifying process of fish scale by titration. J. Huaihai Inst. Technol. (Nat. Sci. Ed.) 2004, 13, 54–56. [Google Scholar]
- Sockalingam, K.; Abdullah, H. Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales. AIP Conf. Proc. 2015, 1669, 020053. [Google Scholar]
- Prockop, D.J.; Kivirikko, K.I. Collagens: Molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 1995, 64, 403–434. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Tranter, G.E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Jmiai, A.; El Ibrahimi, B.; Tara, A.; Oukhrib, R.; El Issami, S.; Jbara, O.; Bazzi, L.; Hilali, M. Chitosan as an eco-friendly inhibitor for copper corrosion in acidic medium: Protocol and characterization. Cellulose 2017, 24, 3843–3867. [Google Scholar] [CrossRef]
- Mateyise, N.G.S.; Conradie, J.; Conradie, M.M. Density functional theory calculated data of the iodomethane oxidative addition to oligothiophene-containing rhodium complexes–importance of dispersion correction. Data Brief 2021, 35, 106929. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, T. About the assignment of wave functions and Eigen energies to the individual electrons of an atom. Physica 1934, 1, 104–133. [Google Scholar] [CrossRef]
- Bandarage, G.; Parson, R. Saddle-point electrons in proton-impact ionization of H: A classical trajectory study. Phys. Rev. A 1990, 41, 5878. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Chandra Ghosh, D. A new algorithm for the evaluation of the global hardness of polyatomic molecules. Mol. Phys. 2011, 109, 917–931. [Google Scholar] [CrossRef]
- Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W. Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part II: Theoretical studies. Corros. Sci. 2014, 83, 292–298. [Google Scholar] [CrossRef]
- Belfilali, I.; Chetouani, A.; Hammouti, B.; Louhibi, S.; Aouniti, A.; Al-Deyab, S. Quantum chemical study of inhibition of the corrosion of mild steel in 1 M hydrochloric acid solution by newly synthesized benzamide derivatives. Res. Chem. Intermed. 2014, 40, 1069–1088. [Google Scholar] [CrossRef]
- Bak, S.Y.; Lee, S.W.; Choi, C.H.; Kim, H.W. Assessment of the influence of acetic acid residue on type I collagen during isolation and characterization. Materials 2018, 11, 2518. [Google Scholar] [CrossRef] [PubMed]
- Zainol, I.; Adenan, N.; Rahim, N.; Jaafar, C.A. Extraction of natural hydroxyapatite from tilapia fish scales using alkaline treatment. Mater. Today Proc. 2019, 16, 1942–1948. [Google Scholar] [CrossRef]
- Kathirvel, K.; Thirumalairaj, B.; Jaganathan, M. Quantum chemical studies on the corrosion inhibition of mild steel by piperidin-4-one derivatives in 1 M H3PO4. Chemistry 2014. [Google Scholar] [CrossRef]
- Moldan, B.; Černý, J. Biogeochemistry of Small Catchments: A tool for Environmental Research; John Wiley & Sons: Chichester, UK, 1994; p. 419. [Google Scholar]
- Ibisi, N.E.; Nnaji, N.J.N.; Sonde, C.U. Experimental and Quantum Chemical Studies on the Corrosion Inhibition Potentials of Xylopia aethiopica extracts. Chem. Mater. Res. 2015, 7, 70–77. [Google Scholar]
- Hadisaputra, S.; Purwoko, A.A.; Savalas, L.R.T.; Prasetyo, N.; Yuanita, E.; Hamdiani, S. Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper. Coatings 2020, 10, 1086. [Google Scholar] [CrossRef]
Frequency Range (cm−1) | Functional Group |
---|---|
3200–3500 | N-H aliphatic primary amine/OH |
1620–1700 | CO2−/C=C alkene |
1400–1300 | C–H group |
1200–800 | PO43− and C–H |
550–600 | PO43− and C=C |
Average Amounts | Weight % | Atomic % | Error % |
---|---|---|---|
C K | 19.8 | 30.995 | 11.5 |
O K | 41.3 | 49.09 | 10.9 |
P K | 11.9 | 7.107 | 3.072 |
Ca K | 27 | 12.685 | 2.2 |
No. | Quantum Chemical Parameters | Collagen | Hydroxyapatite | Fish-Scale Molecule |
---|---|---|---|---|
1. | Molecule formula | C12H19N3O5 | Ca5(PO4)3OH | |
2. | Energy (RB3LYP) (au) | −1009.1930 | −5381.2380 | −6400.0110 |
3. | EHOMO | −0.2470 | −0.2076 | −0.1804 |
4. | ELUMO | −0.0235 | −0.1141 | −0.0632 |
5. | ∆E (eV) | 0.2240 | 0.0900 | 0.1172 |
6. | Dipole moment (µ) | 2.6695 | 20.5643 | 26.563 |
7. | Ionisation potential (I) (eV) | 2.4700 | 0.2076 | 0.1804 |
9. | Electron affinity (A) (eV) | 0.0235 | 0.1142 | 0.0631 |
10. | Electronegativity (x) | 0.5110 | 0.5570 | 0.5320 |
11. | Chemical hardness (η) | 0.4883 | 0.4430 | 0.4680 |
12. | Chemical softness (S) | 2.0480 | 2.257 | 1.6030 |
13. | Fraction of electrons transferred (∆N) | 4.4060 | 4.8115 | 4.5810 |
14. | Electronic energy (EE) | 1009.1930 | −1009.1930 | 6400.0110 |
15. | Polarisation (α) | 175.9433 | 218.2313 | 383.2970 |
Structure | Fish Scale | Collagen | Hydroxyapatite | Einteraction (Hartee) | Einteraction (kJ/mol) |
---|---|---|---|---|---|
1 | −6400,5313 | −1009,1757 | −5391,2311 | −0,1245 | −326,8700 |
2 | −6400,4592 | −1009,1899 | −5391,2133 | −0,0560 | −146,9729 |
3 | −6400,4781 | −1009,1919 | −5391,1999 | −0,0863 | −226,5597 |
4 | –6400,6190 | –1009,1929 | –5391,1917 | –0,2343 | –615,2623 |
5 | −6400,4460 | −1009,1931 | −5391,2252 | −0,0277 | −72,7053 |
6 | −6400,4644 | −1009,1898 | −5391,2057 | −0,0990 | −181,0518 |
Frequency Range (cm−1) | Functional Group |
---|---|
3200–3500 | N-H amide/OH |
1630–1700 | CO2−/C=C alkane |
1200–1450 | C-H group |
500–1200 | PO33− and C=H |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyambi, N.F.; Premlall, K.; Govender, K.K. The Physicochemical Characterisation and Computational Studies of Tilapia Fish Scales as a Green Inhibitor for Steel Corrosion. Eng. Proc. 2024, 67, 34. https://doi.org/10.3390/engproc2024067034
Nyambi NF, Premlall K, Govender KK. The Physicochemical Characterisation and Computational Studies of Tilapia Fish Scales as a Green Inhibitor for Steel Corrosion. Engineering Proceedings. 2024; 67(1):34. https://doi.org/10.3390/engproc2024067034
Chicago/Turabian StyleNyambi, Ntiyiso Faith, Kasturie Premlall, and Krishna Kuben Govender. 2024. "The Physicochemical Characterisation and Computational Studies of Tilapia Fish Scales as a Green Inhibitor for Steel Corrosion" Engineering Proceedings 67, no. 1: 34. https://doi.org/10.3390/engproc2024067034
APA StyleNyambi, N. F., Premlall, K., & Govender, K. K. (2024). The Physicochemical Characterisation and Computational Studies of Tilapia Fish Scales as a Green Inhibitor for Steel Corrosion. Engineering Proceedings, 67(1), 34. https://doi.org/10.3390/engproc2024067034