Moisture Absorption Speed of Textiles for Personal Care Use to Develop Reusable Products †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Q.; Li, Y. Effects of Pore Size Distribution and Fiber Diameter on the Coupled Heat and Liquid Moisture Transfer in Porous Textiles. Int. J. Heat Mass Transf. 2003, 46, 5099–5111. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Xu, D.; Fan, J. The Heat and Moisture Transfer Model of Firefighter Protective Clothing. Int. J. Therm. Sci. 2024, 197, 108854. [Google Scholar] [CrossRef]
- Hang, X.; Sun, W.; Ye, C. Finite Volume Solution of Heat and Moisture Transfer through Three-Dimensional Textile Materials. Comput. Fluids 2012, 57, 25–39. [Google Scholar] [CrossRef]
- Guo, Y.; Ng, F.S.; Hui, P.C.; Li, Y.; Ip, C.; Wong, K.Y.; Mao, A.H. Heat and Mass Transfer of Adult Incontinence Briefs in Computational Simulations and Objective Measurements. Int. J. Heat Mass Transf. 2013, 64, 133–144. [Google Scholar] [CrossRef]
- Miao, D.; Cheng, N.; Wang, X.; Yu, J.; Ding, B. Sandwich-Structured Textiles with Hierarchically Nanofibrous Network and Janus Wettability for Outdoor Personal Thermal and Moisture Management. Chem. Eng. J. 2022, 450, 138012. [Google Scholar] [CrossRef]
- Selvakarthi, D.; Ragupathy, U.S. Textile effluent treatments using natural adsorbents and vapor absorption technology: A box behnken design approach. Desalination Water Treat. 2024, 319, 100443. [Google Scholar] [CrossRef]
- Abdela, A.; Vandaele, M.; Haenen, S.; Buffel, B.; Sirahbizu, B.; Desplentere, F. Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites. J. Compos. Sci. 2023, 7, 382. [Google Scholar] [CrossRef]
- Kim, H.-A. Eco-Friendly Fibers Embedded Yarn Structure in High-Performance Fabrics to Improve Moisture Absorption and Drying Properties. Polymers 2023, 15, 581. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W. Surface tension, wetting and wicking. In Thermal and Moisture Transport in Fibrous Materials; Pan, N., Gibson, P., Eds.; Woodhead Publishing: Sawston, UK, 2006; pp. 136–155. [Google Scholar] [CrossRef]
- Samuel, B.T.; Barburski, M.; Witczak, E.; Jasińska, I. The Influence of Physical Properties and Increasing Woven Fabric Layers on the Noise Absorption Capacity. Materials 2021, 14, 6220. [Google Scholar] [CrossRef] [PubMed]
- Brnada, S.; Pušić, T.; Dekanić, T.; Kovačević, S. Impact of Fabric Construction on Adsorption and Spreading of Liquid Contaminations. Materials 2022, 15, 1998. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, R.S. Wetting phenomena in fibrous materials. In Thermal and Moisture Transport in Fibrous Materials; Pan, N., Gibson, P., Eds.; Woodhead Publishing: Sawston, UK, 2006; pp. 156–187. [Google Scholar] [CrossRef]
- Patnaik, A.; Rengasamy, R.S.; Kothari, V.K.; Ghosh, A. Wetting and Wicking in Fibrous Materials. Text. Prog. 2006, 38, 1–105. [Google Scholar] [CrossRef]
- DIN EN 12127: 1997-12; Textilien—Textile Flächengebilde—Bestimmung der Flächenbezogenen Masse Unter Verwendung kleiner Proben. Beuth: Berlin, Germany; Deutsches Institut für Normung e. V.: Berlin, Germany, 1997.
- DIN EN ISO 5084: 1996-1; Textilien—Bestimmung der Dicke von Textilien und Textilen Erzeugnissen. Beuth: Berlin, Germany; Deutsches Institut für Normung e. V.: Berlin, Germany, 1996.
- DIN EN 14971: 2006-04; Textilien—Maschenwaren—Bestimmung der Maschenzahl je Längeneinheit und Flächeneinheit. Beuth: Berlin, Germany; Deutsches Institut für Normung e. V.: Berlin, Germany, 2006.
- Angelova, R.A. Determination of Porosity of Textiles with an Uneven Pore Size. Comptes Rendus l’Acade’mie Bulg. Sci. 2020, 73, 96–102. [Google Scholar] [CrossRef]
- Nischwitz, A.; Fischer, M.; Haberäcker, P.; Socher, G. Bildverarbeitung: Band II des Standardwerks Computergrafik und Bildverarbeitung, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Doczyova, K.; Glombikova, V.; Komarkova, P. Application of Microtomography in Textile Metrology. Tekstilec 2014, 57, 4–11. [Google Scholar] [CrossRef]
Sample | A | B | C |
---|---|---|---|
Fiber composition | 100% polyester | 100% polyester | 100% recycled polyester |
Knit structure | warp knit—lingerie | warp knit—sportswear | pique double face |
Weight (g/m2) | 192 | 185 | 227 |
Courses density (c/cm) | 14.4 | 15.8 | 17.1 |
Wales density (w/cm) | 16.9 | 18.1 | 11.0 |
Loop density (l/cm2) | 311.5 | 286.1 | 140.7 |
Thickness (mm) | 0.60 | 0.89 | 0.85 |
Finishing | none | none | hydrophilic |
Surface porosity front (%) | 22.587 | 9.547 | 37.269 |
Surface porosity reverse side (%) | - | 8.081 | 14.038 |
Transversal porosity (%) | 0.421 | 0.994 | 3.438 |
Level | Revolutions (min−1) | Shear Velocity (s−1) | L2 (200 mg/L) | L3 (600 mg/L) | ||||
---|---|---|---|---|---|---|---|---|
Shear Stress (Pa) | Viscosity (mPa s) | Temperature (°C) | Shear Stress (Pa) | Viscosity (mPa s) | Temperature (°C) | |||
1 | 5.00 | 27.05 | 0.25 | 11.38 | 18.70 | 0.87 | 31.50 | 20.50 |
2 | 8.30 | 44.90 | 0.48 | 10.83 | 18.80 | 1.12 | 24.60 | 20.30 |
3 | 13.90 | 75.19 | 0.63 | 9.15 | 18.90 | 1.39 | 19.25 | 20.50 |
4 | 23.20 | 125.50 | 0.94 | 7.13 | 18.90 | 2.09 | 16.15 | 20.60 |
5 | 45.30 | 245.00 | 1.42 | 5.90 | 19.00 | 3.03 | 12.55 | 20.60 |
6 | 64.60 | 349.40 | 1.75 | 5.09 | 18.90 | 3.79 | 11.30 | 20.60 |
7 | 107.80 | 583.10 | 2.60 | 4.49 | 18.80 | 5.02 | 9.09 | 20.50 |
8 | 179.60 | 971.60 | 4.09 | 4.19 | 18.90 | 6.94 | 7.14 | 20.40 |
9 | 297.60 | 1610.00 | 6.01 | 3.35 | 19.00 | 9.42 | 6.04 | 20.50 |
10 | 500.00 | 2705.00 | 8.16 | 3.04 | 19.00 | 13.43 | 4.97 | 20.50 |
A—Front | B—Front | B—Reverse | C—Front | C—Reverse | |
---|---|---|---|---|---|
L1 adsorption duration (s) | instantly | 1.933 | 1.000 | instantly | instantly |
L1 adsorption speed (mL/s) | instantly | 0.785 | 2.227 | instantly | instantly |
L1 wet area at start of adsorption (cm2) | 5.658 | 2.826 | 1.791 | 5.124 | 3.000 |
L1 wet area at end of adsorption (cm2) | n.a. | 3.862 | 1.472 | n.a. | n.a |
L1 wet area 10 s after end of adsorption (cm2) | 11.322 | 5.289 | 1.556 | 9.967 | 7.535 |
L2 adsorption duration (s) | 3.950 | 23.167 | 31.733 | 3.000 | 6.608 |
L2 adsorption speed (mL/s) | 0.284 | 0.050 | 0.038 | 0.339 | 0.175 |
L2 wet area at start of adsorption (cm2) | 4.492 | 2.440 | 2.493 | 2.480 | 2.786 |
L2 wet area at end of adsorption (cm2) | 10.440 | 7.778 | 3.735 | 4.908 | 7.132 |
L2 wet area 10 s after end of adsorption (cm2) | 13.534 | 8.915 | 3.958 | 6.591 | n.a. |
L3 adsorption duration (s) | 12.233 | 88.050 | 50.292 | 9.950 | 8.233 |
L3 adsorption speed (mL/s) | 0.087 | 0.011 | 0.021 | 0.102 | 0.122 |
L3 wet area at start of adsorption (cm2) | 4.009 | 2.390 | 2.792 | 2.359 | 2.612 |
L3 wet area at end of adsorption (cm2) | 11.331 | 14.504 | 8.458 | 7.375 | 7.258 |
L3 wet area 10 s after end of adsorption (cm2) | 13.664 | 15.510 | 9.410 | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehne, B.; Eppinger, E.; Sabantina, L. Moisture Absorption Speed of Textiles for Personal Care Use to Develop Reusable Products. Eng. Proc. 2024, 67, 79. https://doi.org/10.3390/engproc2024067079
Mehne B, Eppinger E, Sabantina L. Moisture Absorption Speed of Textiles for Personal Care Use to Develop Reusable Products. Engineering Proceedings. 2024; 67(1):79. https://doi.org/10.3390/engproc2024067079
Chicago/Turabian StyleMehne, Bettina, Elisabeth Eppinger, and Lilia Sabantina. 2024. "Moisture Absorption Speed of Textiles for Personal Care Use to Develop Reusable Products" Engineering Proceedings 67, no. 1: 79. https://doi.org/10.3390/engproc2024067079
APA StyleMehne, B., Eppinger, E., & Sabantina, L. (2024). Moisture Absorption Speed of Textiles for Personal Care Use to Develop Reusable Products. Engineering Proceedings, 67(1), 79. https://doi.org/10.3390/engproc2024067079