Comparison of Inferential Methods for a Novel CMP Model †
Abstract
:1. Introduction
2. A Novel COM-Poisson Model
3. Methods of Estimation
3.1. Generalized Quasi-Likelihood
3.2. Adaptive Generalized Method of Moments (GMM)
4. Simulations and Results
5. Application
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shmueli, G.; Minka, T.; Borle, J.B.; Boatwright, P. A useful distribution for fitting discrete data: Revival of the conway-maxwell-poisson distribution. J. R. Stat. Soc. 2005, 54, 127–142. [Google Scholar] [CrossRef]
- Nadarajah, S. Useful moment and CDF formulations for the com-poisson distribution. Stat. Pap. 2003, 50, 617–622. [Google Scholar] [CrossRef]
- Lord, D.; Geedipally, S.R.; Guikema, S.D. Extension of the application of Conway- Maxwell Poisson models:analysing traffic crash data exhibiting underdispersion. Risk Anal. 2014, 30, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Sellers, K.; Borle, S.; Shmueli, G. The COM-Poisson model for count data: A survey of methods and applications. Appl. Stoch. Model. Bus. Ind. 2012, 22, 104–116. [Google Scholar] [CrossRef]
- Avci, E. Flexibility of using Com-Poisson regression model for count data. Stat. Inf. Comput. 2018, 6, 278–285. [Google Scholar]
- Ribeiro, E.E.; Zeviani, W.N.; Bonat, W.H.; Demetrio, C.G.; Hinde, J. Reparametrization of COM-Poisson regression models with applications in analysis of experimental data. Statical Model. 2019, 20, 22–44. [Google Scholar] [CrossRef]
- Castillo, J.; Perez-Cassany, M. Weighted Poisson distributions for overdispersion and underdispersion situations. Ann. Inst. Stat. Math. 1998, 50, 567–585. [Google Scholar] [CrossRef]
- Cox, D.R. Statistical analysis of time series: Some recent developments. Scand. Stat. 1981, 8, 93–115. [Google Scholar]
- Pedeli, X.; Karlis, D. Bivariate Inar(1) Models; Technical report; Athens University of Economics: Athina, Greece, 2009. [Google Scholar]
- Pedeli, X.; Karlis, D. A bivariate INAR(1) process with application. Stat. Int. J. 2011, 11, 325–349. [Google Scholar] [CrossRef]
- Pedeli, X.; Karlis, D. Some properties of multivariate INAR(1) processes. Compu-Tational Stat. Data Anal. 2013, 67, 213–225. [Google Scholar] [CrossRef]
- McKenzie, E. Discrete variate time series. Handb. Stat. 2003, 21, 573–606. [Google Scholar]
- McKenzie, E. Some simple models for discrete variate time series. Water Resour. 1985, 21, 645–650. [Google Scholar]
- McKenzie, E. Autoregressive moving-average processes with Negative Binomial and geometric marginal distributions. Adv. Appl. Probab. 1986, 18, 679–705. [Google Scholar] [CrossRef]
- Osh, M.A.A.; Alzaid, A.A. Integer-valued moving average (INMA) process. Statis-Tical Pap. 1988, 29, 281–300. [Google Scholar] [CrossRef]
- Fokianos, K. Count time series models. Time-Ser.-Methods Appl. 2012, 30, 315–347. [Google Scholar]
- Khan, N.A.M.; Jowaheer, V. Comparing joint GQL estimation and GMM adaptive estimation in COM-Poisson longitudinal regression model. Commun Stat-Simul Comput. 2013, 42, 755–770. [Google Scholar] [CrossRef]
- Quoreshi, A.M.S.S. Bivariate time series modeling of financial count data. Commun. -Stat.-Theory Methods 2006, 35, 1343–1358. [Google Scholar] [CrossRef]
- Quoreshi, A.M.M.S. A vector integer-valued moving average model for high frequency financial count data. Econ. Lett. 2008, 101, 258–261. [Google Scholar] [CrossRef]
- Hansen, L. Large sample properties of generalized method of moments estimators. Econometrika 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Yu, K.; Zou, H. The combined Poisson INMA(q) models for time series of counts. J. Appl. Math. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Brannas, K. Explanatory Variable in the AR(1) Count Data Model; Department of Economics, Umea University: Umeå, Sweden, 1995; Volume 381, pp. 1–21. [Google Scholar]
- Brannas, K.; Hall, A. Estimation integer-valued moving average models. Appl. Stochastic Model. Bus. Ind. 2001, 17, 277–291. [Google Scholar] [CrossRef]
- Khan, N.A.M.; Sunecher, Y.; Jowaheer, V. Modelling a non-stationary BINAR( 1) Poisson process. J. Stat. Comput. Simul. 2016, 86, 3106–3126. [Google Scholar] [CrossRef]
- Sutradhar, B.C.; Das, K. On the efficiency of regression estimators in generalised linear models for longitudinal data. Biometrika 1999, 86, 459–465. [Google Scholar] [CrossRef]
- Wedderburn, R.W.M. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974, 61, 439–447. [Google Scholar]
- Sutradhar, B.C.; Jowaheer, V.; Rao, P. Remarks on asymptotic efficient estimation for regression effects in stationary and non-stationary models for panel count data. Braz. J. Probab. Stat. 2014, 28, 241–254. [Google Scholar] [CrossRef]
- Liang, K.Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Crowder, M. On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 1995, 82, 407–410. [Google Scholar] [CrossRef]
Method | ||||||||||
3 | 60 | CLS | 0.9827 | 0.9853 | 3.1826 | 0.4865 | 0.9813 | 0.9853 | 3.1404 | 0.9160 |
(0.3024) | (0.3862) | (0.4808) | (0.3168) | (0.3062) | (0.3885) | |||||
GMM | 0.9804 | 0.9868 | 3.122 | 0.4847 | 0.9815 | 0.9848 | 3.112 | 0.8810 | ||
(0.4191) | (0.4185) | (0.5295) | (0.4503) | (0.4477) | (0.5774) | |||||
GQL | 0.9821 | 0.9937 | 3.0401 | 0.4909 | 0.9980 | 0.9956 | 3.0563 | 0.8977 | ||
(0.1669) | (0.1020) | (0.1821) | (0.1152) | (0.1180) | (0.1161) | |||||
100 | CLS | 0.9843 | 0.9848 | 3.1720 | 0.4886 | 0.9813 | 0.9836 | 3.1605 | 0.9108 | |
(0.2034) | (0.2872) | (0.3004) | (0.2550) | (0.2215) | (0.3217) | |||||
GMM | 0.9877 | 0.9803 | 3.1099 | 0.5045 | 0.9870 | 0.9839 | 3.1070 | 0.8999 | ||
(0.3318) | (0.3302) | (0.4031) | (0.3644) | (0.3812) | (0.4331) | |||||
GQL | 0.9922 | 0.9941 | 3.0057 | 0.5101 | 1.0554 | 1.0007 | 3.0781 | 0.8927 | ||
(0.1052) | (0.1065) | (0.1067) | (0.0991) | (0.0965) | (0.1837) | |||||
500 | CLS | 0.9877 | 0.9866 | 3.0463 | 0.4802 | 0.9859 | 0.9815 | 3.0196 | 0.9160 | |
(0.1025) | (0.1918) | (0.2910) | (0.1073) | (0.1076) | (0.2101) | |||||
GMM | 0.9811 | 0.9814 | 3.0635 | 0.5155 | 0.9880 | 0.9804 | 3.0939 | 0.8853 | ||
(0.2309) | (0.2861) | (0.2158) | (0.2862) | (0.2201) | (0.2194) | |||||
GQL | 1.0024 | 1.0030 | 3.0087 | 0.5058 | 0.9938 | 1.0082 | 3.0044 | 0.9086 | ||
(0.0642) | (0.0501) | (0.0694) | (0.0481) | (0.0434) | (0.0513) | |||||
2.5 | 60 | CLS | 0.980. | 0.9890 | 2.5145 | 0.4886 | 0.9891 | 0.9852 | 2.5105 | 0.8974 |
(0.4131) | (0.4561) | (0.5908) | (0.4080) | (0.4097) | (0.5223) | |||||
GMM | 0.9845 | 1.1041 | 2.4939 | 0.5104 | 0.9851 | 0.9819 | 2.5089 | 0.8802 | ||
(0.5411) | (0.5037) | (0.5384) | (0.5249) | (0.5091) | (0.5584) | |||||
GQL | 0.9926 | 0.9953 | 2.4915 | 0.4954 | 0.9983 | 0.9972 | 2.5009 | 0.8959 | ||
(0.1690) | (0.1245) | (0.1079) | (0.1169) | (0.1159) | (0.1011) | |||||
100 | CLS | 0.9807 | 0.9824 | 2.5023 | 0.4876 | 0.9802 | 0.9835 | 2.5030 | 0.8837 | |
(0.3814) | (0.3274) | (0.3389) | (0.3948) | (0.3162) | (0.3255) | |||||
GMM | 0.9869 | 0.9820 | 2.5058 | 0.5125 | 0.9820 | 0.9881 | 2.5011 | 0.8899 | ||
(0.4050) | (0.4303) | (0.4292) | (0.4012) | (0.4075) | (0.4002) | |||||
GQL | 0.9926 | 0.9960 | 2.5080 | 0.4971 | 0.9978 | 0.9941 | 2.5067 | 0.8943 | ||
(0.0612) | (0.0686) | (0.0655) | (0.0632) | (0.0611) | (0.0680) | |||||
500 | CLS | 0.9835 | 0.9874 | 2.5061 | 0.4815 | 0.9863 | 0.9804 | 2.5044 | 0.8851 | |
(0.1374) | (0.1880) | (0.1027) | (0.1105) | (0.1553) | (0.1189) | |||||
GMM | 0.9860 | 0.9858 | 2.5082 | 0.5110 | 0.9854 | 0.9870 | 2.5061 | 0.8880 | ||
(0.2796) | (0.2702) | (0.3321) | (0.2225) | (0.2045) | (0.3241) | |||||
GQL | 0.9937 | 0.9967 | 2.5029 | 0.5066 | 0.9904 | 0.9995 | 2.5022 | 0.8922 | ||
(0.0193) | (0.0130) | (0.0275) | (0.0134) | (0.0124) | (0.0270) |
Mean | Variance | |||||
---|---|---|---|---|---|---|
Fortnightly Accident | 5.578 | 10.623 | 0.411 | 0.1471 | 0.0055 | 0.0003 |
Method | Intercept | TL | NSC | RA | Dispersion | |
---|---|---|---|---|---|---|
1.879 | −0.00145 | −1.155 | 0.524 | 0.7913 | 0.389 | |
(0.1238) | (0.1328) | (0.1411) | (0.1234) | (0.0312) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunecher, Y.; Mamode Khan, N. Comparison of Inferential Methods for a Novel CMP Model. Eng. Proc. 2024, 68, 18. https://doi.org/10.3390/engproc2024068018
Sunecher Y, Mamode Khan N. Comparison of Inferential Methods for a Novel CMP Model. Engineering Proceedings. 2024; 68(1):18. https://doi.org/10.3390/engproc2024068018
Chicago/Turabian StyleSunecher, Yuvraj, and Naushad Mamode Khan. 2024. "Comparison of Inferential Methods for a Novel CMP Model" Engineering Proceedings 68, no. 1: 18. https://doi.org/10.3390/engproc2024068018
APA StyleSunecher, Y., & Mamode Khan, N. (2024). Comparison of Inferential Methods for a Novel CMP Model. Engineering Proceedings, 68(1), 18. https://doi.org/10.3390/engproc2024068018