A Multivariate LSTM Model for Short-Term Water Demand Forecasting †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preprocessing
2.2. Model Training, Validation, and Testing
2.3. Loss Function
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghalehkhondabi, I.; Ardjmand, E.; Young, W.A., II; Weckman, G.R. Water demand forecasting: Review of soft computing methods. Environ. Monit. Assess. 2017, 189, 313. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.; Vreeburg, J.H.G.; Van Schagen, K.M.; Rietveld, L.C. A fully adaptive forecasting model for short-term drinking water demand. Environ. Model. Softw. 2013, 48, 141–151. [Google Scholar] [CrossRef]
- Alvisi, S.; Franchini, M.; Marinelli, A. A short-term, pattern-based model for water-demand forecasting. J. Hydroinform. 2007, 9, 39–50. [Google Scholar] [CrossRef]
- Donkor, E.A.; Mazzuchi, T.A.; Soyer, R.; Alan Roberson, J. Urban Water Demand Forecasting: Review of Methods and Models. J. Water Resour. Plan. Manag. 2014, 140, 146–159. [Google Scholar] [CrossRef]
- Niknam, A.; Zare, H.K.; Hosseininasab, H.; Mostafaeipour, A.; Herrera, M. A Critical Review of Short-Term Water Demand Forecasting Tools—What Method Should I Use? Sustainability 2022, 14, 5412. [Google Scholar] [CrossRef]
- Pacchin, E.; Gagliardi, F.; Alvisi, S.; Franchini, M. A Comparison of Short-Term Water Demand Forecasting Models. Water Resour. Manag. 2019, 33, 1481–1497. [Google Scholar] [CrossRef]
- Li, M.; Zheng, F.; Tao, R.; Zhang, Q.; Kapelan, Z. Hourly and Daily Urban Water Demand Predictions Using a Long Short-Term Memory Based Model. J. Water Resour. Plan. Manag. 2020, 146, 05020017. [Google Scholar]
- Zanfei, A.; Brentan, B.M.; Menapace, A.; Righetti, M. A short-term water demand forecasting model using multivariate long short-term memory with meteorological data. J. Hydroinform. 2022, 24, 1053–1065. [Google Scholar] [CrossRef]
Training Stage | Training, Validation, and Testing Weeks | Evaluation Week 1 |
---|---|---|
1 | 1/2021 to 29/2022 | 30/2022 |
2 | Stage 1 + 31/2022 to 43/2022 | 44/2022 |
3 | Stage 2 + 45/2022 to 2/2023 | 3/2023 |
4 | Stage 3 + 4/2022 to 3/2023 | 10/2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, A.K.; Abokifa, A.A. A Multivariate LSTM Model for Short-Term Water Demand Forecasting. Eng. Proc. 2024, 69, 167. https://doi.org/10.3390/engproc2024069167
Salem AK, Abokifa AA. A Multivariate LSTM Model for Short-Term Water Demand Forecasting. Engineering Proceedings. 2024; 69(1):167. https://doi.org/10.3390/engproc2024069167
Chicago/Turabian StyleSalem, Aly K., and Ahmed A. Abokifa. 2024. "A Multivariate LSTM Model for Short-Term Water Demand Forecasting" Engineering Proceedings 69, no. 1: 167. https://doi.org/10.3390/engproc2024069167
APA StyleSalem, A. K., & Abokifa, A. A. (2024). A Multivariate LSTM Model for Short-Term Water Demand Forecasting. Engineering Proceedings, 69(1), 167. https://doi.org/10.3390/engproc2024069167