Hybrid Chemical and Data-Driven Model for Stiff Chemical Kinetics Using a Physics-Informed Neural Network †
Abstract
:1. Introduction
2. Methods
2.1. X-TFC Overview
2.2. Neural Network Architecture
2.3. Neural Network Loss Functions
2.4. Neural Network Optimization
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pham, H.T.; Wahman, D.G.; Fairey, J.L. Updated reaction pathway for dichloramine decomposition: Formation of reactive nitrogen species and N-nitrosodimethylamine. Environ. Sci. Technol. 2021, 55, 1740–1749. [Google Scholar] [CrossRef] [PubMed]
- De Santi, M.; Khan, U.T.; Arnold, M.; Fesselet, J.F.; Ali, S.I. Forecasting point-of-consumption chlorine residual in refugee settlements using ensembles of artificial neural networks. NJP Clean Water 2021, 4, 35. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Perdikaris, P.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- De Florio, M.; Schiassi, E.; Furfaro, R. Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos 2022, 32, 063107. [Google Scholar] [CrossRef] [PubMed]
- American Water Works Association. 2017 Water Utility Disinfection Survey Report. Available online: https://www.awwa.org/Portals/0/AWWA/ETS/Resources/2017DisinfectionSurveyReport.pdf?ver=2018-12-21-163548-830 (accessed on 12 March 2024).
- Huang, G.; Huang, G.B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Jafvert, T.J.; Valentine, R.L. Reaction Scheme for the Chlorination of Ammoniacal Water. Environ. Sci. Technol. 1992, 26, 557–586. [Google Scholar] [CrossRef]
- Austin Water Utility. Water Quality Report. Available online: https://www.austintexas.gov/sites/default/files/files/Water/WaterQualityReports/AW_Water_Quality_Report_Austin_2021.pdf (accessed on 12 March 2024).
- Brodfuehrer, S.H. Kinetics of Haloamines during Chloramination of Bromide-Containing Waters: Impact of Acid/Base Catalysis and Natural Organic Matter on Haloamine Formation and Decay. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankel, M.; De Florio, M.; Schiassi, E.; Sela, L. Hybrid Chemical and Data-Driven Model for Stiff Chemical Kinetics Using a Physics-Informed Neural Network. Eng. Proc. 2024, 69, 40. https://doi.org/10.3390/engproc2024069040
Frankel M, De Florio M, Schiassi E, Sela L. Hybrid Chemical and Data-Driven Model for Stiff Chemical Kinetics Using a Physics-Informed Neural Network. Engineering Proceedings. 2024; 69(1):40. https://doi.org/10.3390/engproc2024069040
Chicago/Turabian StyleFrankel, Matthew, Mario De Florio, Enrico Schiassi, and Lina Sela. 2024. "Hybrid Chemical and Data-Driven Model for Stiff Chemical Kinetics Using a Physics-Informed Neural Network" Engineering Proceedings 69, no. 1: 40. https://doi.org/10.3390/engproc2024069040
APA StyleFrankel, M., De Florio, M., Schiassi, E., & Sela, L. (2024). Hybrid Chemical and Data-Driven Model for Stiff Chemical Kinetics Using a Physics-Informed Neural Network. Engineering Proceedings, 69(1), 40. https://doi.org/10.3390/engproc2024069040