Efficient Network Representation: Graph Contraction Strategies in Water Distribution Networks †
Abstract
:1. Introduction
2. Methodology
2.1. Water Network Representation as a Graph
2.2. Graph Contraction
2.3. Evaluation Approach
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrera, M.; Abraham, E.; Stoianov, I. A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution Networks. Water Resour. Manag. 2016, 30, 1685–1699. [Google Scholar] [CrossRef]
- Panguluri, S.; Grayman, W.; Clark, R.; Garner, L.; Haught, R. Water Distribution System Analysis: Field Studies, Modeling, and Management; US Environmental Protection Agency, Water Supply and Water Resources Division: Washington, DC, USA, 2005.
- Barros, D.B.; Souza, R.G.; Meirelles, G.; Brentan, B. Leak detection in water distribution networks based on graph signal processing of pressure data. J. Hydroinform. 2023, 25, 2281–2290. [Google Scholar] [CrossRef]
- Berahmand, K.; Haghani, S.; Rostami, M.; Li, Y. A new attributed graph clustering by using label propagation in complex networks. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1869–1883. [Google Scholar] [CrossRef]
- Katherine, K.; David, H.; Michael, B.; Joseph, H.; Terranna, H.; Regan, M.; Jonathan, B. Water Network Tool for Resilience (WNTR) User Manual; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2017; Volume 1.
- Bonsma, P.; Paulusma, D. Using contracted solution graphs for solving reconfiguration problems. Acta Inform. 2019, 56, 619–648. [Google Scholar]
- Saramäki, J.; Kivelä, M.; Onnela, J.P.; Kaski, K.; Kertesz, J. Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 2007, 75, 027105. [Google Scholar] [CrossRef] [PubMed]
- Bragalli, C.; D’Ambrosio, C.; Lee, J.; Lodi, A.; Toth, P. Water Network Design by MINLP; Rep. No. 2008. RC24495; IBM: Armonk, NY, USA, 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, D.; Alaggio, J.; Meirelles, G.; Brentan, B.; Luvizotto, E. Efficient Network Representation: Graph Contraction Strategies in Water Distribution Networks. Eng. Proc. 2024, 69, 63. https://doi.org/10.3390/engproc2024069063
Barros D, Alaggio J, Meirelles G, Brentan B, Luvizotto E. Efficient Network Representation: Graph Contraction Strategies in Water Distribution Networks. Engineering Proceedings. 2024; 69(1):63. https://doi.org/10.3390/engproc2024069063
Chicago/Turabian StyleBarros, Daniel, Jordana Alaggio, Gustavo Meirelles, Bruno Brentan, and Edevar Luvizotto. 2024. "Efficient Network Representation: Graph Contraction Strategies in Water Distribution Networks" Engineering Proceedings 69, no. 1: 63. https://doi.org/10.3390/engproc2024069063
APA StyleBarros, D., Alaggio, J., Meirelles, G., Brentan, B., & Luvizotto, E. (2024). Efficient Network Representation: Graph Contraction Strategies in Water Distribution Networks. Engineering Proceedings, 69(1), 63. https://doi.org/10.3390/engproc2024069063