Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks †
Abstract
:1. Introduction
2. Methodology
3. Results and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baamonde, S.; de Moura, J.; Novo, J.; Rouco, J.; Ortega, M. Feature Definition and Selection for Epiretinal Membrane Characterization in Optical Coherence Tomography Images. In Image Analysis and Processing—ICIAP 2017; Springer International Publishing: Basel, Switzerland, 2017; pp. 456–466. [Google Scholar] [CrossRef]
- Baamonde, S.; de Moura, J.; Novo, J.; Ortega, M. Automatic Detection of Epiretinal Membrane in OCT Images by Means of Local Luminosity Patterns. In Advances in Computational Intelligence; Springer International Publishing: Basel, Switzerland, 2017; pp. 222–235. [Google Scholar] [CrossRef]
- Lo, Y.C.; Lin, K.H.; Bair, H.; Sheu, W.H.H.; Chang, C.S.; Shen, Y.C.; Hung, C.L. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Sci. Rep. 2020, 10, 8424. [Google Scholar] [CrossRef] [PubMed]
- Sonobe, T.; Tabuchi, H.; Ohsugi, H.; Masumoto, H.; Ishitobi, N.; Morita, S.; Enno, H.; Nagasato, D. Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT. Int. Ophthalmol. 2018, 39, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Baamonde, S.; de Moura, J.; Novo, J.; Charlón, P.; Ortega, M. Automatic identification and characterization of the epiretinal membrane in OCT images. Biomed. Opt. Express 2019, 10, 4018. [Google Scholar] [CrossRef] [PubMed]
- Baamonde, S.; de Moura, J.; Novo, J.; Charlón, P.; Ortega, M. Automatic Identification and Intuitive Map Representation of the Epiretinal Membrane Presence in 3D OCT Volumes. Sensors 2019, 19, 5269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gende, M.; De Moura, J.; Novo, J.; Charlón, P.; Ortega, M. Automatic Segmentation and Intuitive Visualisation of the Epiretinal Membrane in 3D OCT Images Using Deep Convolutional Approaches. IEEE Access 2021, 9, 75993–76004. [Google Scholar] [CrossRef]
- Gawlik, K.; Hausser, F.; Paul, F.; Brandt, A.U.; Kadas, E.M. Active contour method for ILM segmentation in ONH volume scans in retinal OCT. Biomed. Opt. Express 2018, 9, 6497–6518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
ERM-Positive Eyes Only | ||||||
---|---|---|---|---|---|---|
Baamonde et al. [6] | Our Proposal | |||||
Segmentation | Post-Processing | Segmentation | Post-Processing | |||
Dice | Mean | 0.670 | 0.780 | 0.810 | 0.833 | |
SD | ||||||
Jaccard | Mean | 0.515 | 0.649 | 0.689 | 0.725 | |
SD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gende, M.; de Moura, J.; Novo, J.; Charlón, P.; Ortega, M. Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks. Eng. Proc. 2021, 7, 2. https://doi.org/10.3390/engproc2021007002
Gende M, de Moura J, Novo J, Charlón P, Ortega M. Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks. Engineering Proceedings. 2021; 7(1):2. https://doi.org/10.3390/engproc2021007002
Chicago/Turabian StyleGende, Mateo, Joaquim de Moura, Jorge Novo, Pablo Charlón, and Marcos Ortega. 2021. "Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks" Engineering Proceedings 7, no. 1: 2. https://doi.org/10.3390/engproc2021007002
APA StyleGende, M., de Moura, J., Novo, J., Charlón, P., & Ortega, M. (2021). Automatic Segmentation and Visualisation of the Epirretinal Membrane in OCT Scans Using Densely Connected Convolutional Networks. Engineering Proceedings, 7(1), 2. https://doi.org/10.3390/engproc2021007002