Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation †
Abstract
:1. Introduction
2. Experiments
2.1. Datasets
2.2. Beck Depression Inventory-II (BDI-II)
2.3. Models
2.4. Our Approach
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- World Health Organization. Health & Environmental Research Online (HERO). In Proceedings of the Preamble to the Constitution of the World Health Organization as Adopted by the International Health Conference, New York, NY, USA, 19–22 June 1946; World Health Organization: Geneva, Switzerland, 1948. [Google Scholar]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory (BDI–II); Pearson: London, UK, 1996; Volume 10. [Google Scholar]
- De Choudhury, M.; Counts, S.; Horvitz, E. Social media as a measurement tool of depression in populations. In Proceedings of the 5th Annual ACM Web Science Conference, Paris, France, 2–4 May 2013; pp. 47–56. [Google Scholar]
- Xu, K.; Tin, J.; Kim, J. A BERT based model for Multiple-Choice Reading Comprehension. Passages 2019, 6, 362. [Google Scholar]
- Losada, D.E.; Crestani, F.; Parapar, J. eRisk 2020: Self-harm and depression challenges. In Proceedings of the European Conference on Information Retrieval, Lisbon, Portugal, 14–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 557–563. [Google Scholar]
- Losada, D.E.; Crestani, F.; Parapar, J. Overview of erisk 2019 early risk prediction on the internet. In Proceedings of the International Conference of the Cross-Language Evaluation Forum for European Languages, Lugano, Switzerland, 9–12 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 340–357. [Google Scholar]
- Lai, G.; Xie, Q.; Liu, H.; Yang, Y.; Hovy, E. Race: Large-scale reading comprehension dataset from examinations. arXiv 2017, arXiv:1704.04683. [Google Scholar]
- Zellers, R.; Bisk, Y.; Schwartz, R.; Choi, Y. Swag: A large-scale adversarial dataset for grounded commonsense inference. arXiv 2018, arXiv:1808.05326. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. CoRR 2017, 2017, 5998–6008. [Google Scholar]
- Oliveira, L. BioInfo@ UAVR at eRisk 2020: On the use of psycholinguistics features and machine learning for the classification and quantification of mental diseases. In Proceedings of the CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020; Volume 2696. CLEF (Working Notes). [Google Scholar]
- Martínez-Castaño, R.; Htait, A.; Azzopardi, L.; Moshfeghi, Y. Early risk detection of self-harm and depression severity using BERT-based transformers: iLab at CLEF eRisk 2020. In Proceedings of the CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020; Volume 2696. CLEF (Working Notes). [Google Scholar]
- Uban, A.S.; Rosso, P. Deep learning architectures and strategies for early detection of self-harm and depression level prediction. In Proceedings of the CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020; CLEF (Working Notes). Sun SITE Central Europe: Aachen, Germany, 2020; Volume 2696, pp. 1–12. [Google Scholar]
- Maupomé, D.; Armstrong, M.D.; Belbahar, R.M.; Alezot, J.; Balassiano, R.; Queudot, M.; Mosser, S.; Meurs, M.J. Early Mental Health Risk Assessment through Writing Styles, Topics and Neural Models. In Proceedings of the CEUR Workshop Proceedings, Thessaloniki, Greece, 22–25 September 2020; Volume 2696. CLEF (Working Notes). [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabín, J.; Pérez, A.; Parapar, J. Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation. Eng. Proc. 2021, 7, 23. https://doi.org/10.3390/engproc2021007023
Gabín J, Pérez A, Parapar J. Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation. Engineering Proceedings. 2021; 7(1):23. https://doi.org/10.3390/engproc2021007023
Chicago/Turabian StyleGabín, Jorge, Anxo Pérez, and Javier Parapar. 2021. "Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation" Engineering Proceedings 7, no. 1: 23. https://doi.org/10.3390/engproc2021007023
APA StyleGabín, J., Pérez, A., & Parapar, J. (2021). Multiple-Choice Question Answering Models for Automatic Depression Severity Estimation. Engineering Proceedings, 7(1), 23. https://doi.org/10.3390/engproc2021007023