Teaching Aspects of ROS 2 and Autonomous Vehicles †
Abstract
:1. Introduction
2. Related Courseware
3. The Developed Syllabus and Hands-On Learning
4. Selected Aspects of the Syllabus and Experiments
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karalekas, G.; Vologiannidi, S.; Kalomiros, J. Europa: A case study for teaching sensors, data acquisition and robotics via a ROS-based educational robot. Sensors 2020, 20, 2469. [Google Scholar] [CrossRef] [PubMed]
- Cañas, J.M.; Perdices, E.; García-Pérez, L.; Fernández-Conde, J. A ROS-based open tool for intelligent robotics education. Appl. Sci. 2020, 10, 7419. [Google Scholar] [CrossRef]
- Roldán-Álvarez, D.; Cañas, J.M.; Valladares, D.; Arias-Perez, P.; Mahna, S. Unibotics: Open ROS-based online framework for practical learning of robotics in higher education. Multimed. Tools Appl. 2024, 83, 52841–52866. [Google Scholar] [CrossRef]
- Karaca, M.; Yayan, U. ROS based visual programming tool for mobile robot education and applications. arXiv 2020, arXiv:2011.13706. [Google Scholar]
- Araújo, A.; Portugal, D.; Couceiro, M.S.; Rocha, R.P. Integrating Arduino-based educational mobile robots in ROS. J. Intell. Robot. Syst. 2015, 77, 281–298. [Google Scholar] [CrossRef]
- Raudmäe, R.; Schumann, S.; Vunder, V.; Oidekivi, M.; Nigol, M.K.; Valner, R.; Masnavi, H.; Singh, A.K.; Aabloo, A.; Kruusamäe, K. ROBOTONT–Open-source and ROS-supported omnidirectional mobile robot for education and research. HardwareX 2023, 14, e00436. [Google Scholar] [CrossRef] [PubMed]
- O’Kelly, M.; Sukhil, V.; Abbas, H.; Harkins, J.; Kao, C.; Pant, Y.V.; Bertogna, M. F1/10: An open-source autonomous cyber-physical platform. arXiv 2019, arXiv:1901.08567. [Google Scholar]
- Tătulea-Codrean, A.; Mariani, T.; Engell, S. Design and simulation of a machine-learning and model predictive control approach to autonomous race driving for the f1/10 platform. IFAC-PapersOnLine 2020, 53, 6031–6036. [Google Scholar] [CrossRef]
- Agnihotri, A.; O’Kelly, M.; Mangharam, R.; Abbas, H. Teaching autonomous systems at 1/10th-scale: Design of the f1/10 racecar, simulators and curriculum. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education, Portland, OR, USA, 11–14 March 2020; pp. 657–663. [Google Scholar]
- Betz, J.; Zheng, H.; Liniger, A.; Rosolia, U.; Karle, P.; Behl, M.; Mangharam, R. Autonomous vehicles on the edge: A survey on autonomous vehicle racing. IEEE Open J. Intell. Transp. Syst. 2022, 3, 458–488. [Google Scholar] [CrossRef]
- Evans, B.D.; Betz, J.; Zheng, H.; Engelbrecht, H.A.; Mangharam, R.; Jordaan, H.W. Bypassing the Simulation-to-reality Gap: Online Reinforcement Learning using a Supervisor. In Proceedings of the 2023 21st International Conference on Advanced Robotics (ICAR), Abu Dhabi, United Arab Emirates, 5–8 December 2023; pp. 325–331. [Google Scholar]
- Evans, B.D.; Betz, J.; Zheng, H.A.; Engelbrecht, H.A.; Mangharam, R.; Jordaan, H.W. High-performance Racing on Unmapped Tracks using Local Maps. arXiv 2024, arXiv:2401.17732. [Google Scholar]
University/Institution | Department/Project | People | License |
---|---|---|---|
MIT (Massachusetts Institute of Technology) | RACECAR project, F1/10 car model for Gazebo | Assoc. Prof. Dr. Tufan Kumbasar et al. | MIT license |
University of Virginia | F1/10 Crew | Dr. Madhur Behl and Varundev Suresh Babu | GPL-3.0 license |
ETH Zürich | Programming for Robotics—ROS | Péter Fankhauser, Dominic Jud, Martin Wermelinger, Prof. Dr. Marco Hutter | N/A |
TU München (Technical University of Munich) | Institute of Automotive Technology, “Autonomous Driving Software Engineering” | Prof. Dr.-Ing. Lienkamp and Phillip Karle | GPL-3.0 license |
TH Ingolstadt | Autonomous Vehicle Engineering Faculty of Electrical Engineering and Computer Science | Prof. Dr. Martin Ebert et al. | N/A |
Stanford University | Introduction to Robotics | Prof. Oussama Khatib et al. | N/A |
Stanford University | CS231n: Convolutional Neural Networks for Visual Recognition | Andrej Karpathy | MIT license |
Óbuda University | Antal Bejczy Center for Intelligent Robotics | Tamás D. Nagy and Péter Galambos | CC BY-NC-SA 4.0 |
Autoware Foundation | Software and documentation | N/A | Apache License 2.0 |
Antonio Mauro Galiano | ros2_pid_library | N/A | MIT license |
Budapest University of Technology | Control theory | József Bokor and Péter Gáspár | CC BY-NC-ND 3.0 |
Module | Description | Tools/Software | Guidance |
---|---|---|---|
1. Introduction | Introduction to autonomous vehicles and robots (without ROS 2) | Terminal, VS Code, Foxglove Studio | Introduce the typical sensory data, visualize it with Foxglove studio and get familiar with the terminal. |
2. ROS 2 Concepts and Install | Overview of ROS 2 architecture, installation, and configuration. | ROS 2 Humble | Step-by-step installation guide on Linux/Windows, troubleshooting, and verifying setup via ROS 2 CLI commands. |
3. Sensing | Integration of sensors into ROS 2 for AV applications. | ROS 2 drivers, LIDAR, camera, GPS. | Guide students through sensor integration, subscribing to data, and visualizing sensor inputs in rviz2/Foxglove. |
4. ROS 2 Advanced | Advanced ROS 2 topics including QoS, node lifecycle, and multi-threading. | DDS for QoS, rclcpp and rclpy for node management. | Teach how to adjust QoS settings for performance in unreliable network conditions, focusing on real-time use cases. |
5. Transformations | Coordinate transformations in AVs using TF2. | tf2_ros library, rviz2 for visualization. | Explain the importance of transformations for sensor alignment and robot navigation, with practical transformation examples. |
6. Perception | Object detection and environment perception in AVs using ROS 2. | OpenCV, PCL libraries, machine learning models | Guide students through using perception libraries, applying them to real-world AV tasks like obstacle detection. |
7. Simulation | Use of simulators like Gazebo to test AV algorithms. | Gazebo (Ignition) | Teach students how to create and customize virtual environments, focusing on AV simulation in Gazebo. |
8. Planning | Path planning for AVs using navigation algorithms. | ROS 2 Nav2, A*, RRT. | Show students how to configure planners and controllers, adapting them to specific AV tasks and real-time environments. |
9. Control | Vehicle control (low-level actuators, high-level path following) in ROS 2. | ROS 2 Control package, PID controllers. | Teach students how to tune control parameters for different robot types, ensuring smooth and accurate path following in Gazebo simulation. |
10. AI | Introduction to AI methods in AVs for decision-making and perception. | PyTorch integrated with ROS 2. | Provide step-by-step guidance on setting up AI models and integrating them with ROS 2 for enhanced AV performance. |
11. Safety, V&V | Safety aspects, verification, and validation of AV systems. | ROS 2 testing frameworks | Guide students in using formal verification methods and testing frameworks to ensure system safety and reliability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth, E.; Ignéczi, G.; Markó, N.; Krecht, R.; Unger, M. Teaching Aspects of ROS 2 and Autonomous Vehicles. Eng. Proc. 2024, 79, 49. https://doi.org/10.3390/engproc2024079049
Horváth E, Ignéczi G, Markó N, Krecht R, Unger M. Teaching Aspects of ROS 2 and Autonomous Vehicles. Engineering Proceedings. 2024; 79(1):49. https://doi.org/10.3390/engproc2024079049
Chicago/Turabian StyleHorváth, Ernő, Gergő Ignéczi, Norbert Markó, Rudolf Krecht, and Miklós Unger. 2024. "Teaching Aspects of ROS 2 and Autonomous Vehicles" Engineering Proceedings 79, no. 1: 49. https://doi.org/10.3390/engproc2024079049
APA StyleHorváth, E., Ignéczi, G., Markó, N., Krecht, R., & Unger, M. (2024). Teaching Aspects of ROS 2 and Autonomous Vehicles. Engineering Proceedings, 79(1), 49. https://doi.org/10.3390/engproc2024079049