The Application of Digital Technology in the Field of Civil Aircraft Fireproof †
Abstract
:1. Introduction
2. Aircraft Fireproof Technology
3. Digital Technology Application
3.1. Digital Twin Technology
3.2. Numerical Simulation Technique
3.2.1. Full-Scale Fire Simulation
3.2.2. Full-Scale Fire Simulation
3.2.3. Material Fire Simulation
3.3. Multi-Objective Optimization Algorithm
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAA Fire Safety Branch. Fire Test Facilities. 2024. Available online: https://www.fire.tc.faa.gov (accessed on 16 August 2024).
- EASA. Digitalisation in the Aviation Industry—Be Part of the Change. 2021. Available online: https://www.easa.europa.eu (accessed on 4 November 2021).
- Air Cargo Week. Digital Transformation in Aviation: What Will Change in 2024? 2024. Available online: https://www.aircargoweek.com (accessed on 5 January 2024).
- Xiong, M.; Wang, H. Digital twin applications in aviation industry: A review. Int. J. Adv. Manuf. Technol. 2022, 121, 5677–5692. [Google Scholar] [CrossRef]
- Khalil, E.E.; Othman, M.A. On the Computations of Aircraft Postcrash Fires. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. 0994. [Google Scholar]
- Lessons Learned Library Dashboard. Available online: https://www.faa.gov/lessons_learned/accidents/lessons_learned_library (accessed on 20 August 2024).
- FAA. Modeling the Heat Release Rate of Aircraft Cabin Panels; DOT/FAA/CT-92/3; FAA: Washington, DC, USA, 1993.
- Sarkos, C.P. Application of Full-Scale Fire Tests to Characterize and Improve the Aircraft Postcrash Fire Environment. Toxicology 1996, 115, 79. [Google Scholar] [CrossRef] [PubMed]
- Marker, T.R. Full-Scale Test Evaluation of Aircraft Fuel Fire Burnthrough Resistance Improvements; DOT/FAA/AR-98/52; FAA: Washington, DC, USA, 1999.
- FAA. Computational Fluid Dynamics Code for Smoke Transport During an Aircraft Cargo Compartment Fire: Transport Solver, Graphical User Interface, and Preliminary Baseline Validation; DOT/FAA/AR-03/49; FAA: Washington, DC, USA, 2003.
- FAA. A Study on Experimental Tests and Numerical Simulations of Boeing 747 Overhead Inaccessible-Area Fires; DOT/FAA/TC-21/8; FAA: Washington, DC, USA, 2021.
- FAA. Engineering and Development Program Plan, Aircraft Cabin Fire Safety; DOT/FAA/ED-18/7; FAA: Washington, DC, USA, 1980.
- Standard No. AC 20-135; Powerplant Installation and Propulsion System Component Fire Protection Test Methods, Standards and Criteria. FAA: Washington, DC, USA, 1990.
- Aeroblaze Laboratory. Available online: https://www.aeroblazelab.com (accessed on 1 September 2024).
- World Aviation Festival. The Uses of Digital Twin Technology in Aviation. 2022. Available online: https://worldaviationfestival.com (accessed on 30 September 2022).
- Aerospace Tech Review. Digital Twinning: The Latest on Virtual Models. Available online: https://aerospacetechreview.com (accessed on 29 August 2021).
- Boeing. Digital Acceleration. 2024. Available online: https://www.boeing.com (accessed on 5 September 2024).
- Northrop Grumman. Digital Twins Facilitate Program Success. Available online: https://www.northropgrumman.com (accessed on 8 September 2024).
- Prieler, R.; Gerhardter, H.; Landfahrer, M.; Gaber, C.; Schluckner, C.; Eichhorn-Gruber, M.; Schwabegger, G.; Hochenauer, C. Development of a numerically efficient approach based on coupled CFD/FEM analysis for virtual fire resistance tests-Part B: Deformation process of a steel structure. Fire Mater. 2020, 44, 704–723. [Google Scholar] [CrossRef]
- Galea, E.; Markatos, N. A review of mathematical modelling of aircraft cabin fires. Appl. Math. Model. 1987, 11, 162–176. [Google Scholar] [CrossRef]
- Jia, F.; Patel, M.K.; Galea, E.R.; Grandison, A.; Ewer, J. CFD fire simulation of the Swissair flight 111 in-flight fire—Part 1: Prediction of the pre-fire air flow within the cockpit and surrounding areas. Aeronaut. J. 2006, 110, 41–52. [Google Scholar] [CrossRef]
- Jia, F.; Patel, M.K.; Galea, E.R.; Grandison, A.; Ewer, J. CFD fire simulation of the Swissair Flight 111 in-flight fire—Part II: Fire spread analysis. Aeronaut. J. 2006, 110, 303–314. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, F.; Galea, E.R. Predicting Toxic Gas Concentrations Resulting from Enclosure Fires Using Local Equivalence Ratio Concept Linked To Fire Field Models. Fire Mater. 2006, 31, 27–51. [Google Scholar] [CrossRef]
- Galea, E.R.; Filippidis, L.; Wang, Z.; Ewer, J. Fire and Evacuation Analysis in BWB Aircraft Configurations: Computer Simulations and Large-Scale Evacuation Experiment. Aeronaut. J. 2010, 114, 271–277. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, F.; Galea, E.R.; Patel, M.K. Predicting Toxic Gas Concentrations at Locations Remote from The Fire Source. Fire Mater. 2010, 35, 505–526. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, F.; Galea, E.R.; Ewer, J. Computational Fluid Dynamics Simulation of a Post-Crash Aircraft Fire Test. J. Aircr. 2013, 50, 164–175. [Google Scholar] [CrossRef]
- Galea, E.R.; Wang, Z.; Jia, F. Numerical investigation of the fatal 1985 Manchester Airport B737 fire. Aeronaut. J. 2017, 121, 287–319. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Qi, H.; Zhao, G.; Yang, W. Performance Simulation of Evacuation Procedures in Post-Crash Aircraft Fires. J. Aircr. 2014, 51, 945–955. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Jiang, N.W.; Qi, H.P.; Luo, X.N. Modified Fire Simulation Curve of Cabin Temperatures in Postcrash Fires for Fire Safety Engineering. Math. Probl. Eng. 2016, 2016, 8978575. [Google Scholar] [CrossRef]
- Barnett, C. BFD curve: A new empirical model for fire compartment temperatures. Fire Saf. J. 2002, 37, 437–463. [Google Scholar] [CrossRef]
- Kuminecz, J.F.; Brickner, R.W. Full-Scale Flammability Data for Validation of Aircraft Fire Mathematical Models; NASA Technical Memorandum 58244; NASA: Washington, DC, USA, 1982.
- Mokhov, K.Y.; Kudryavtsev, A.Y.; Voronkov, O.V.; Voronina, E.B.; Sukhov, S.V.; Ryabov, A.A.; Zhurenkov, Y.N.; Soloveva, A.V.; Grigoriev, A.V. Numerical Simulation of Fire Resistance Test for Gas Turbine Component Using Coupled CFD/FEM Approach. Int. J. Aerosp. Eng. 2020, 2020, 8867708. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Gao, Z.; Yang, J. Insulation Performance of Heat-Resistant Material for High-Speed Aircraft Under Thermal Environments. J. Mater. Eng. Perform. 2015, 24, 3373–3385. [Google Scholar] [CrossRef]
- Gao, D.; Yao, B.; Chang, G.; Li, Q. Multi-Objective Optimization Design of Vehicle Side Crashworthiness Based on Machine Learning Point-Adding Method. Appl. Sci. 2022, 12, 10320. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Y. Comprehensive Evaluation and Optimization Model of Regional Fire Protection System. Comput. Intell. Neurosci. 2021, 2021, 3517836. [Google Scholar]
- Choi, S.; Lee, H.; Kim, J. Multi-objective optimization for cabin fire safety design. J. Fire Prot. Eng. 2016, 26, 195–213. [Google Scholar]
- Choi, S.; Lee, H.; Kim, J. Optimization of Cargo Hold Fire Protection Systems using Multi-objective Techniques. Fire Saf. J. 2017, 91, 330–340. [Google Scholar]
- Choi, S.; Lee, H.; Kim, J. Multi-objective optimization for Engine Compartment Fire Protection Systems. Fire Technol. 2018, 54, 367–381. [Google Scholar]
- Choi, S.; Lee, H.; Kim, J. Enhancing Optimization Efficiency of Engine Compartment Fire Protection Systems using Machine Learning. Fire Technol. 2019, 55, 49–65. [Google Scholar]
- Choi, S.; Lee, H.; Kim, J. Fire Protection Optimization for Composite Structures. J. Fire Sci. 2020, 38, 345–360. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Su, Z. The Application of Digital Technology in the Field of Civil Aircraft Fireproof. Eng. Proc. 2024, 80, 31. https://doi.org/10.3390/engproc2024080031
Wu B, Su Z. The Application of Digital Technology in the Field of Civil Aircraft Fireproof. Engineering Proceedings. 2024; 80(1):31. https://doi.org/10.3390/engproc2024080031
Chicago/Turabian StyleWu, Bin, and Zhengliang Su. 2024. "The Application of Digital Technology in the Field of Civil Aircraft Fireproof" Engineering Proceedings 80, no. 1: 31. https://doi.org/10.3390/engproc2024080031
APA StyleWu, B., & Su, Z. (2024). The Application of Digital Technology in the Field of Civil Aircraft Fireproof. Engineering Proceedings, 80(1), 31. https://doi.org/10.3390/engproc2024080031