Electrospun Hyaluronan-Based Nanofibers with Mangiferin: Preparation, Morphology, and Drug Release Kinetics †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Solution
2.3. Electrospinning
2.4. Determination of Morphology and Diameters of Nanofibers
2.5. Digital and Statistical Analysis
2.6. Drug Loading Capacity and Encapsulation Efficiency
2.7. Evaluation of Mangiferin Release Kinetics from Polymeric Nanofibers
3. Results
3.1. Morphology of Electrospun Nanofibers
3.2. Drug Loading Capacity and Encapsulation Efficiency
3.3. Evaluation of Mangiferin Release Kinetics from Polymeric Nanofibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.C.; Trevisan, M.T.S.; Hull, W.E.; Erben, G.; De Brito, E.S.; Pfundstein, B.; Würtele, G.; Spiegelhalder, B.; Owen, R.W. Characterization and Quantitation of Polyphenolic Compounds in Bark, Kernel, Leaves, and Peel of Mango (Mangifera indica L.). J. Agric. Food Chem. 2008, 56, 5599–5610. [Google Scholar] [CrossRef]
- Hou, S.; Wang, F.; Li, Y.; Li, Y.; Wang, M.; Sun, D.; Sun, C. Pharmacokinetic Study of Mangiferin in Human Plasma after Oral Administration. Food Chem. 2011, 132, 289–294. [Google Scholar] [CrossRef]
- Mahalakshmi, K.; Pushpangadan, S.; Padmavathy, K.; Vivekanandan, P.; Sukumaran, V.; Subbiya, A. Antibacterial Efficacy of Mangifera indica L. Kernel and Ocimum sanctum L. Leaves against Enterococcus Faecalis Dentinal Biofilm. J. Conserv. Dent. 2013, 16, 454. [Google Scholar] [CrossRef]
- Mazlan, N.A.; Azman, S.; Ghazali, N.F.; Yusri, P.Z.S.; Idi, H.M.; Ismail, M.; Sekar, M. Synergistic Antibacterial Activity of Mangiferin with Antibiotics against Staphylococcus aureus. Drug Invent. Today 2019, 12, 14–17. [Google Scholar]
- Sarker, A.; Amin, N.; Shimu, I.J.; Akhter, M.P.; Alam, M.A.; Rahman, M.M.; Sultana, H. Antimicrobial Activity of Methanolic Extract of Langra Mango Pulp. J. Pharmacog. Phytochem. 2017, 6, 28–30. [Google Scholar]
- Nguyen, H.T.; Miyamoto, A.; Hoang, H.T.; Vu, T.T.T.; Pothinuch, P.; Nguyen, H.T.T. Effects of Maturation on Antibacterial Properties of Vietnamese Mango (Mangifera indica) Leaves. Molecules 2024, 29, 1443. [Google Scholar] [CrossRef]
- Thambi, P.A.; John, S.; Lydia, E.; Iyer, P.; Monica, S.J. Antimicrobial Efficacy of Mango Peel Powder and For-mulation of Recipes Using Mango Peel Powder (Mangifera indica L.). Int. J. Home Sci. 2016, 2, 155–161. [Google Scholar]
- Vasudevan, A.; Kesavan, D.K.; Wu, L.; Su, Z.; Wang, S.; Ramasamy, M.K.; Hopper, W.; Xu, H. In Silico and In Vitro Screening of Natural Compounds as Broad-Spectrum β-Lactamase Inhibitors against Acinetobacter Baumannii New Delhi Metallo-β-Lactamase-1 (NDM-1). BioMed Res. Int. 2022, 2022, 4230788. [Google Scholar] [CrossRef]
- Jangra, A.; Arora, M.K.; Kisku, A.; Sharma, S. The Multifaceted Role of Mangiferin in Health and Diseases: A Review. Adv. Tradit. Med. 2020, 21, 619–643. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, J.; Li, X.; Wang, Q. Dissoluble Mangiferin Inclusion Compound and Its Preparation Method. Chinese Patent CN101019877-A, 22 March 2007. [Google Scholar]
- Allaw, M.; Pleguezuelos-Villa, M.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Nacher, A.; Diez-Sales, O.; Saurí, A.R.; Ferrer, E.E.; Fadda, A.M.; et al. Innovative Strategies to Treat Skin Wounds with Mangiferin: Fabrication of Transfersomes Modified with Glycols and Mucin. Nanomedicine 2020, 15, 1671–1685. [Google Scholar] [CrossRef]
- Morozkina, S.N.; Vu, T.H.N.; Generalova, Y.E.; Snetkov, P.P.; Uspenskaya, M.V. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems—A Novel Research Direction. Biomolecules 2021, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Tohamy, H.-A.S.; El-Sakhawy, M.; El-Masry, H.M.; Saleh, I.A.; AbdelMohsen, M.M. Preparation of Hydroxyethyl Cellulose/Mangiferin Edible Films and Their Antimicrobial Properties. BMC Chem. 2022, 16, 113. [Google Scholar] [CrossRef]
- Athipornchai, A.; Pabunrueang, P.; Trakulsujaritchok, T. Mangiferin Loaded Carrageenan/Chitosan Core-Shell Hydrogel Beads: Preparation, Characterization and Proposed Application. Food Hydrocoll. 2023, 147, 109394. [Google Scholar] [CrossRef]
- Al-Naymi, H.A.S.; Mahmoudi, E.; Kamil, M.M.; Almajidi, Y.Q.; Al-Musawi, M.H.; Mohammadzadeh, V.; Ghorbani, M.; Moghadam, F.M. A Novel Designed Nanofibrous Mat Based on Hydroxypropyl Methyl Cellulose Incorporating Mango Peel Extract for Potential Use in Wound Care System. Int. J. Biol. Macromol. 2024, 259, 129159. [Google Scholar] [CrossRef]
- Abadi, B.; Goshtasbi, N.; Bolourian, S.; Tahsili, J.; Adeli-Sardou, M.; Forootanfar, H. Electrospun Hybrid Nanofibers: Fabrication, Characterization, and Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 986975. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Pan, S.; Rodrigues, J.; Elkodous, M.A.; Danquah, M.K. Medical Applications of Biopolymer Nanofibers. Biomater. Sci. 2022, 10, 4107–4118. [Google Scholar] [CrossRef]
- Deshmukh, S.; Kathiresan, M.; Kulandainathan, M.A. A Review on Biopolymer-Derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater. Sci. 2022, 10, 4424–4442. [Google Scholar] [CrossRef]
- Syed, M.H.; Khan, M.M.R.; Zahari, M.A.K.M.; Beg, M.D.H.; Abdullah, N. A Review on Current Trends and Future Prospectives of Electrospun Biopolymeric Nanofibers for Biomedical Applications. Eur. Polym. J. 2023, 197, 112352. [Google Scholar] [CrossRef]
- Fallacara, A.; Baldini, E.; Manfredini, S.; Vertuani, S. Hyaluronic Acid in the Third Millennium. Polymers 2018, 10, 701. [Google Scholar] [CrossRef]
- Uppal, R.; Ramaswamy, G.N.; Arnold, C.; Goodband, R.; Wang, Y. Hyaluronic Acid Nanofiber Wound Dressing—Production, Characterization, and in Vivo Behavior. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97B, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Rogacheva, E.; Kremleva, A.; Morozkina, S.; Uspenskaya, M.; Kraeva, L. In-Vitro Antibacterial Activity of Curcumin-Loaded Nanofibers Based on Hyaluronic Acid against Multidrug-Resistant ESKAPE Pathogens. Pharmaceutics 2022, 14, 1186. [Google Scholar] [CrossRef]
- Thien, D.V. Electrospun Chitosan/PVA Nanofibers for Drug Delivery. Vietnam J. Sci. Technol. 2018, 54, 185. [Google Scholar] [CrossRef]
- Fallacara, A.; Marchetti, F.; Pozzoli, M.; Citernesi, U.R.; Manfredini, S.; Vertuani, S. Formulation and Characterization of Native and Crosslinked Hyaluronic Acid Microspheres for Dermal Delivery of Sodium Ascorbyl Phosphate: A Comparative Study. Pharmaceutics 2018, 10, 254. [Google Scholar] [CrossRef]
- Yeo, Y.; Park, K. Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems. Arch. Pharm. Res. 2004, 27, 1–12. [Google Scholar] [CrossRef]
- Ahmed, L.; Atif, R.; Eldeen, T.; Yahya, I.; Omara, A.; Eltayeb, M. Study the Using of Nanoparticles as Drug Delivery System Based on Mathematical Models for Controlled Release. JLTEMAS 2019, 8, 52–56. [Google Scholar]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Masaro, L.; Zhu, X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24, 731–775. [Google Scholar] [CrossRef]
- Papadopoulou, V.; Kosmidis, K.; Vlachou, M.; Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 2006, 309, 44–50. [Google Scholar] [CrossRef]
- Rohani, S.A.; Hemmatinejad, N.; Bahrami, S.H.; Bashari, A. A comparison between solvent casting and electrospinning methods for the fabrication of neem extract-containing buccal films. J. Ind. Text. 2022, 51 (Suppl. 1), 311S–335S. [Google Scholar] [CrossRef]
- Martín-Camacho, U.J.; Rodríguez-Barajas, N.; Sánchez-Burgos, J.A.; Pérez-Larios, A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int. J. Pharm. 2023, 640, 123017. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Polymer Matrix Capacity, % | Encapsulation Efficiency, % | ||
---|---|---|---|---|
Theoretical | Experimental | Theoretical | Experimental | |
HA_25 | 3.85 | 2.78 ± 0.25 | ~100.0 | 71.49 ± 6.64 |
HA_15 | 6.25 | 5.82 ± 0.96 | ~100.0 | 85.79 ± 10.01 |
HA_5 | 16.67 | 14.74 ± 0.28 | ~100.0 | 81.68 ± 13.53 |
Model and Parameters | Sample Name | |||
---|---|---|---|---|
HA_25 | HA_15 | HA_5 | ||
Zero-order | K0 | 0.03193 | 0.06394 | 0.18515 |
R2 | 0.47533 | 0.43284 | 0.38877 | |
First-order | KF | 0.01051 | 0.0093 | 0.00666 |
R2 | 0.49673 | 0.4616 | 0.33961 | |
Higuchi | KH | 0.4856 | 1.03552 | 2.60798 |
R2 | 0.54692 | 0.45556 | 0.22509 | |
Hixson–Crowell | KS | −0.01064 | −0.02131 | −0.04554 |
R2 | 0.47533 | 0.43284 | 0.32487 | |
Korsmeyer–Peppas (Qt/Q0 < 0.6) | KK | 0.24052 | 0.25268 | 0.26158 |
n | 0.58171 | 0.60316 | 0.74067 | |
R2 | 0.99456 | 0.99425 | 0.99933 | |
Korsmeyer–Peppas (all data) | KK | 0.44886 | 0.48982 | 0.58548 |
n | 0.21271 | 0.19101 | 0.14669 | |
R2 | 0.95284 | 0.94886 | 0.93256 | |
Peppas–Sahlin | K1 | 0.35698 | 0.4034 | 0.4807 |
K2 | −0.03157 | −0.04025 | −0.05609 | |
m | 0.46212 | 0.43404 | 0.41491 | |
R2 | 0.98935 | 0.98412 | 0.98213 | |
Weibull | α | 0.2872 | 0.31206 | 0.32284 |
β | 0.74328 | 0.7571 | 0.88384 | |
R2 | 0.99697 | 0.99451 | 0.99503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaikenov, R.; Klimshina, V.; Generalova, Y.; Serbun, P.; Kosova, A.; Dorogov, M.; Morozkina, S.; Snetkov, P. Electrospun Hyaluronan-Based Nanofibers with Mangiferin: Preparation, Morphology, and Drug Release Kinetics. Eng. Proc. 2024, 81, 2. https://doi.org/10.3390/engproc2024081002
Shaikenov R, Klimshina V, Generalova Y, Serbun P, Kosova A, Dorogov M, Morozkina S, Snetkov P. Electrospun Hyaluronan-Based Nanofibers with Mangiferin: Preparation, Morphology, and Drug Release Kinetics. Engineering Proceedings. 2024; 81(1):2. https://doi.org/10.3390/engproc2024081002
Chicago/Turabian StyleShaikenov, Roman, Vladislava Klimshina, Yuliya Generalova, Polina Serbun, Anna Kosova, Maksim Dorogov, Svetlana Morozkina, and Petr Snetkov. 2024. "Electrospun Hyaluronan-Based Nanofibers with Mangiferin: Preparation, Morphology, and Drug Release Kinetics" Engineering Proceedings 81, no. 1: 2. https://doi.org/10.3390/engproc2024081002
APA StyleShaikenov, R., Klimshina, V., Generalova, Y., Serbun, P., Kosova, A., Dorogov, M., Morozkina, S., & Snetkov, P. (2024). Electrospun Hyaluronan-Based Nanofibers with Mangiferin: Preparation, Morphology, and Drug Release Kinetics. Engineering Proceedings, 81(1), 2. https://doi.org/10.3390/engproc2024081002