Depth Image Selection Based on Posture for Calf Body Weight Estimation †
Abstract
:1. Introduction
2. Methodology
2.1. Overview of Calf Body Weight Estimation System
2.2. Individual Identification by Using RFID
2.3. Selecting Depth Images Based on Calf’s Posture
3. Experiment
3.1. Data Set
3.2. Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meyer, K. Variance components due to direct and maternal effects for growth traits of Australian beef cattle. Livest. Prod. Sci. 1992, 31, 179–204. [Google Scholar] [CrossRef]
- Wang, Z.; Shadpour, S.; Chan, E.; Rotondo, V.; Wood, M.K.; Tulpan, D. ASAS-NANP SYMPOSIUM: Applications of machine learning for livestock body weight prediction from digital images. J. Anim. Sci. 2021, 99, skab022. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, N.; Ohkawa, T.; Ohta, C.; Oyama, K.; Takaki, Y.; Nishide, R. Image Extraction Based on Depth Information for Calf Body Weight Estimation. In Proceedings of the 12th EFITA-HAICTA-WCCA Congress, Rhodes, Greece, 27–29 June 2019. [Google Scholar]
- Yamashita, A.; Ohkawa, T.; Oyama, K.; Ohta, C.; Nishide, R.; Honda, T. Calf Weight Estimation with Stereo Camera Using Three-Dimensional Successive Cylindrical Model. J. Inst. Ind. Appl. Eng. 2018, 6, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Nishide, R.; Yamashita, A.; Takaki, Y.; Ohta, C.; Oyama, K.; Ohkawa, T. Calf Robust Weight Estimation Using 3D Contiguous Cylindrical Model and Directional Orientation from Stereo Images. In Proceedings of the Ninth International Symposium on information and Communication Technology, Danang City, Vietnam, 6 December 2018; pp. 208–215. [Google Scholar]
- opencv_contrib/bgfg_gsoc.cpp at 6520dbaa224a661ca8105b1ab0b71451fd715f4c · opencv/opencv_contrib · GitHub. Available online: https://github.com/opencv/opencv_contrib/blob/6520dbaa224a661ca8105b1ab0b71451fd715f4c/modules/bgsegm/src/bgfg_gsoc.cpp (accessed on 14 June 2021).
Method | Number of Images/Calves (Training Data) | Number of Images/Calves (Test Data) | Coefficient of Determination | MAPE (%) |
---|---|---|---|---|
Existing method [3] | 375/60 | 69/19 | 0.6303 | 13.87 |
Proposed method | 650/78 | 226/27 | 0.6548 | 12.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, Y.; Ohkawa, T.; Ohta, C.; Oyama, K.; Nishide, R. Depth Image Selection Based on Posture for Calf Body Weight Estimation. Eng. Proc. 2021, 9, 20. https://doi.org/10.3390/engproc2021009020
Yamamoto Y, Ohkawa T, Ohta C, Oyama K, Nishide R. Depth Image Selection Based on Posture for Calf Body Weight Estimation. Engineering Proceedings. 2021; 9(1):20. https://doi.org/10.3390/engproc2021009020
Chicago/Turabian StyleYamamoto, Yuki, Takenao Ohkawa, Chikara Ohta, Kenji Oyama, and Ryo Nishide. 2021. "Depth Image Selection Based on Posture for Calf Body Weight Estimation" Engineering Proceedings 9, no. 1: 20. https://doi.org/10.3390/engproc2021009020