Immobilization of Heavy Metals Using Biochar and Manganese Dioxide for Preventing Pollution †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of δ-MnO2/Biochar Composite Material
2.2. Sequential Extraction
2.3. Bioaccessibility
2.4. Evaluation of Soil Pollution
2.4.1. Enrichment Factor
2.4.2. Geo-Accumulation Index
2.4.3. Contamination Factor
2.4.4. Pollution Load Index
2.4.5. Single Metal Pollution Factor and Global Metal Pollution Factor
3. Results and Discussion
3.1. Characterization Analysis
3.1.1. Specific Surface Area and Pore Size
3.1.2. Surface Element Analysis
3.1.3. Functional Group Analysis (Figure 2)
3.1.4. Bioavailability
3.2. Heavy Metal Forms in Soil
3.3. Soil Pollution Assessment
3.3.1. EF
3.3.2. Igeo
3.3.3. CF and PLI
3.3.4. Mobility, ICF, and GCF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, E.; Yang, Y.; Xu, Z.; Qiu, H.; Yang, F.; Peijnenburg, W.J.G.M.; Zhang, W.; Qiu, R.; Wang, S. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci. Total Environ. 2019, 673, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.; Couto, C.; Ribeiro, A.R.; Maia, A.S.; Santos, M.; Tiritan, M.E.; Pinto, E.; Almeida, A.A. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal. Sci. Total Environ. 2018, 639, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Yuan, B.; Fu, M.-L. A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd(II) and Pb(II). Chemosphere 2020, 239, 124745. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 2015, 197, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, H.; Wang, M.; Xue, J. Remediation of petroleum-contaminated soil by ball milling and reuse as heavy metal adsorbent. J. Hazard. Mater. 2022, 424, 127305. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Quinlivan, P.A.; Knappe, D.R.U. Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 2002, 40, 2085–2100. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, Y.; Qiu, W.; Sun, Z.; Liu, Z.; Song, Z. Adsorption Properties of Nano-MnO2–Biochar Composites for Copper in Aqueous Solution. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 173. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Res. 1980, 18, 61–73. [Google Scholar] [CrossRef]
- Johannes, L. Locking carbon up in soil makes more sense than storing it in plants and trees that eventually decompose, argues Johannes Lehmann. Can this idea work a large scale? Nature 2007, 447, 143–144. [Google Scholar]
- Huang, M.; Zhang, Y.; Li, F.; Zhang, L.; Ruoff, R.S.; Wen, Z.; Liu, Q. Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors. Sci. Rep. 2014, 4, 3878. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhou, D.; Zhu, L. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Szabó, T.; Tombácz, E.; Illés, E.; Dékány, I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 2006, 44, 537–545. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
Parameters | SBET | SMeso | SMicro | SMeso/SBET | VTotal | VMeso | VMicro | VMeso/VTotal |
---|---|---|---|---|---|---|---|---|
—— m2/g —— | — % — | —— cc/g —— | — % — | |||||
Biochar | 94.9 | 19.0 | 75.9 | 20.1 | 0.09 | 0.06 | 0.03 | 64.8 |
δ-MnO2 | 245 | 141 | 105 | 57.3 | 0.79 | 0.75 | 0.04 | 95.5 |
Biochar/δ-MnO2 | 216 | 176 | 40.6 | 81.2 | 0.45 | 0.40 | 0.05 | 89.0 |
Biochar/δ-MnO2 (%) | As | Cu | Pb | Zn |
---|---|---|---|---|
0 | 8.34 | 7.79 | 3.18 | 5.19 |
1 | 7.31 | 6.15 | 2.00 | 4.34 |
5 | 6.41 | 5.69 | 2.00 | 3.86 |
10 | 5.98 | 5.48 | 1.98 | 3.76 |
20 | 7.13 | 6.61 | 2.35 | 4.47 |
Ratio of Biochar/δ-MnO2 in Soil (%) | As | Cu | Pb | Zn |
---|---|---|---|---|
0 | 8.34 | 7.79 | 3.18 | 5.19 |
1 | 7.31 | 6.15 | 2.00 | 4.34 |
5 | 6.41 | 5.69 | 2.00 | 3.86 |
10 | 5.98 | 5.48 | 1.98 | 3.76 |
20 | 7.13 | 6.61 | 2.35 | 4.47 |
Ratio of Biochar/δ-MnO2 in Soil (%) | As | Cu | Pb | Zn |
---|---|---|---|---|
0 | 2.62 | 2.52 | 1.23 | 1.94 |
1 | 2.68 | 2.43 | 0.81 | 1.93 |
5 | 2.49 | 2.32 | 0.81 | 1.76 |
10 | 2.36 | 2.24 | 0.77 | 1.69 |
20 | 2.28 | 2.17 | 0.68 | 1.61 |
Ratio of Biochar/δ-MnO2 in Soil (%) | As | Cu | Pb | Zn | PLI |
---|---|---|---|---|---|
0 | 9.23 | 8.62 | 3.52 | 5.75 | 6.34 |
1 | 9.62 | 8.08 | 2.62 | 5.71 | 5.84 |
5 | 8.43 | 7.49 | 2.62 | 5.08 | 5.38 |
10 | 7.70 | 7.07 | 2.56 | 4.84 | 5.09 |
20 | 7.30 | 6.77 | 2.40 | 4.58 | 4.83 |
Ratio of Biochar/δ-MnO2 in Soil (%) | As | Cu | Pb | Zn |
---|---|---|---|---|
0 | 6.01 | 33.3 | 21.7 | 65.3 |
1 | 2.44 | 22.4 | 5.29 | 55.3 |
5 | 2.75 | 16.3 | 0.75 | 44.6 |
10 | 1.86 | 13.0 | 0.61 | 39.5 |
20 | 1.52 | 7.61 | 0.63 | 31.3 |
Ratio of Biochar/δ-MnO2 in Soil (%) | ICF | GCF | |||
---|---|---|---|---|---|
As | Cu | Pb | Zn | ||
0 | 0.56 | 4.79 | 4.10 | 5.83 | 11.3 |
1 | 0.46 | 3.28 | 2.61 | 3.71 | 10.1 |
5 | 0.57 | 2.87 | 2.50 | 2.93 | 8.87 |
10 | 0.58 | 1.84 | 1.90 | 2.59 | 6.90 |
20 | 0.35 | 0.59 | 0.30 | 1.82 | 3.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, S.-W.C.; Lu, P.-Q. Immobilization of Heavy Metals Using Biochar and Manganese Dioxide for Preventing Pollution. Eng. Proc. 2025, 91, 12. https://doi.org/10.3390/engproc2025091012
Chien S-WC, Lu P-Q. Immobilization of Heavy Metals Using Biochar and Manganese Dioxide for Preventing Pollution. Engineering Proceedings. 2025; 91(1):12. https://doi.org/10.3390/engproc2025091012
Chicago/Turabian StyleChien, Shui-Wen Chang, and Pei-Qi Lu. 2025. "Immobilization of Heavy Metals Using Biochar and Manganese Dioxide for Preventing Pollution" Engineering Proceedings 91, no. 1: 12. https://doi.org/10.3390/engproc2025091012
APA StyleChien, S.-W. C., & Lu, P.-Q. (2025). Immobilization of Heavy Metals Using Biochar and Manganese Dioxide for Preventing Pollution. Engineering Proceedings, 91(1), 12. https://doi.org/10.3390/engproc2025091012