Geopolymers—Base Materials and Properties of Green Structural Materials †
Abstract
:1. Introduction
- The dissolution of the aluminosilicate precursors to form reactive particles Si(OH)4 and Al(OH)4−.
- Restructuring and modification of aluminosilicate structures to a more stable state. The hydrolysis process leads to the release of water from the structure at this stage.
- Gelation/Polycondensation: Polymerization and precipitation of the system, i.e., the formation of a three-dimensional network of silico-aluminate that forms a geopolymer.
2. Base Materials of Geopolymers
2.1. Mineral Precursors
2.1.1. Primary Raw Materials
- ➢
- Clay and clay minerals
- ➢
- Metakaolin
2.1.2. Secondary Raw Materials
- ➢
- Fly Ash
- ➢
- Granulated Blast Furnace Slag (GBFS)
- ➢
- Red Mud
- ➢
- Rice Husk
2.2. Activator Solutions
2.2.1. Alkali Activators
2.2.2. Acidic Activators
3. Properties of Geopolymers
4. Conclusions
- Many mineral raw materials can be used in geopolymer technology.
- Especially interesting is the possibility of using waste materials from the industrial, energy, and mining sectors in the geopolymer synthesis process. This solution allows the reduction of the carbon footprint of the geopolymer composite, which makes the geopolymer material more environmentally friendly.
- The most optimal solution is to use locally available waste materials. In this way, it is possible to reduce both the financial and environmental costs of producing geopolymer materials.
- The properties of geopolymer composites indicate that such materials can be an alternative to cement-based materials in some applications (Figure 2).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Institut Géopolymère: Saint-Quentin, France, 2020. [Google Scholar]
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- What Is a Geopolymer? Introduction. Institut Géopolymère, Saint-Quentin, France. Available online: http://www.geopolymer.org/science/introduction (accessed on 10 July 2022).
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 2007, 62, 2318–2329. [Google Scholar] [CrossRef]
- Prud′Homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Rossignol, S. In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 2011, 51, 15–22. [Google Scholar] [CrossRef]
- Ren, D.; Yan, C.; Duan, P.; Zhang, Z.; Li, L.; Yan, Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr. Build. Mater. 2017, 134, 56–66. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Barbosa, T.R.; Foletto, E.L.; Dotto, G.L.; Jahn, S.L. Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceram. Int. 2018, 44, 416–423. [Google Scholar] [CrossRef]
- Perná, I.; Hanzlíček, T. The solidification of aluminum production waste in geopolymer matrix. J. Clean. Prod. 2014, 84, 657–662. [Google Scholar] [CrossRef]
- Łach, M. Geopolymer Foams—Will They Ever Become a Viable Alternative to Popular Insulation Materials?—A Critical Opinion. Materials 2021, 14, 3568. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 2016, 114, 276–289. [Google Scholar] [CrossRef]
- Gokhale, C. The Immobilisation of Organic Waste by Geopolymerization. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2001. [Google Scholar]
- Diffo, B.K.; Elimbi, A.; Cyr, M.; Manga, J.D.; Kouamo, H.T. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 2015, 3, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Mucsi, G.; Ambrus, M. Raw materials for geopolymerization. In Proceedings of the MultiScience—XXXI. microCAD International Multidisciplinary Scientific Conference, University of Miskolc, Miskolc, Hungary, 20–21 April 2017. [Google Scholar]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Zhao, Q.; Cheng, F. Novel process of alumina extraction from coal fly ash by pre-desilicating—Na2CO3 activation—Acid leaching technique. Hydrometallurgy 2017, 169, 418–425. [Google Scholar] [CrossRef]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Katarzyna, B.; Le, C.H.; Louda, P.; Michał, S.; Bakalova, T.; Tadeusz, P.; Prałat, K. The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste. Processes 2020, 8, 1052. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, W.; Huang, B.; Shu, X.; He, Q. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. J. Hazard. Mater. 2019, 369, 503–511. [Google Scholar] [CrossRef]
- Red Mud. Available online: https://en.wikipedia.org/wiki/Red_mud (accessed on 15 July 2022).
- Singh, B. Rice husk ash. In Waste and Supplementary Cementitious Materials in Concrete; Woodhead Publishing: Cambridge, UK, 2018; pp. 417–460. [Google Scholar]
- Sitarz, M.; Castro-Gomes, J.; Hager, I. Strength and Microstructure Characteristics of Blended Fly Ash and Ground Granulated Blast Furnace Slag Geopolymer Mortars with Na and K Silicate Solution. Materials 2022, 15, 211. [Google Scholar] [CrossRef]
- Helmy, A.I. Intermittent curing of fly ash geopolymer mortar. Constr. Build. Mater. 2016, 110, 54–64. [Google Scholar] [CrossRef]
- Singh, B.P.; Bhargava, O.N.; Chaubey, R.S.; Kishore, N.; Prasad, S.K. Early Cambrian Trail Archaeonassa from the Sankholi Formation (Tal Group), Nigali Dhar Syncline (Sirmur District), Himachal Pradesh. J. Geol. Soc. India 2015, 85, 717–721. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Appl. Clay. Sci. 2017, 140, 81–87. [Google Scholar] [CrossRef]
- Shuai, Q.; Xu, Z.; Yao, Z.; Chen, X.; Jiang, Z.; Peng, X.; An, R.; Li, Y.; Jiang, X.; Li, H. Fire resistance of phosphoric acid-based geopolymer foams fabricated from metakaolin and hydrogen peroxide. Mater. Lett. 2020, 263, 127228. [Google Scholar] [CrossRef]
- Celerier, H.; Jouin, J.; Gharzouni, A.; Mathivet, V.; Sobrados, I.; Tessier-Doyen, N.; Rossignol, S. Relation between working properties and structural properties from 27Al, 29Si and 31P NMR and XRD of acid-based geopolymers from 25 to 1000 °C. Mater. Chem. Phys. 2019, 228, 293–302. [Google Scholar] [CrossRef]
- Sellami, M.; Barre, M.; Toumi, M. Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin. Appl. Clay Sci. 2019, 180, 105192. [Google Scholar] [CrossRef]
- Janošević, N.; Đorić-Veljković, S.; Topličić-Ćurčić, G.; Karamarković, J. Properties of geopolymers. FU Arch. Civ. Eng. 2018, 16, 45–56. [Google Scholar]
- Kaya, M.; Koksal, F.; Gencel, O.; Munir, M.J.; Kazmi, S.M. Influence of micro Fe2O3 and MgO on the physical and mechanical properties of the zeolite and kaolin based geopolymer mortar. J. Build. Eng. 2022, 52, 104443. [Google Scholar] [CrossRef]
- Davidovits, J. Properties of geopolymer cements. In Proceedings of the First International Conference on Alkaline Cements and Concretes, Kiev, Ukraine, 11–14 October 1994. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, T.M.M.; Sitarz, M.; Mrόz, K.; Różycki, M. Geopolymers—Base Materials and Properties of Green Structural Materials. Mater. Proc. 2023, 13, 43. https://doi.org/10.3390/materproc2023013043
Issa TMM, Sitarz M, Mrόz K, Różycki M. Geopolymers—Base Materials and Properties of Green Structural Materials. Materials Proceedings. 2023; 13(1):43. https://doi.org/10.3390/materproc2023013043
Chicago/Turabian StyleIssa, Tarreck Mahaman Manssour, Mateusz Sitarz, Katarzyna Mrόz, and Marcin Różycki. 2023. "Geopolymers—Base Materials and Properties of Green Structural Materials" Materials Proceedings 13, no. 1: 43. https://doi.org/10.3390/materproc2023013043
APA StyleIssa, T. M. M., Sitarz, M., Mrόz, K., & Różycki, M. (2023). Geopolymers—Base Materials and Properties of Green Structural Materials. Materials Proceedings, 13(1), 43. https://doi.org/10.3390/materproc2023013043