Metal-Organic Frameworks as Novel Photocatalysts: Opportunities for Catalyst Design †
Abstract
:1. Introduction
2. Metal-Organic Frameworks for Photocatalysis
2.1. Carbon Dioxide Reduction
2.2. Nitrogen Reduction Reaction (NRR)
2.3. Water-Splitting Reaction
3. Outlook on the Use of MOFs as Photocatalysts
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, Z.; Bueken, B.; De Vos, D.E.; Fischer, R.A. Defect-Engineered Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54, 7234–7254. [Google Scholar] [CrossRef]
- Cao, S.; Li, B.; Zhu, R.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 2018, 355, 602–623. [Google Scholar] [CrossRef]
- Jiao, L.; Seow, J.Y.R.; Skinner, W.S.; Wang, Z.U.; Jiang, H.-L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2018, 27, 43–68. [Google Scholar] [CrossRef]
- Xu, C.; Hedin, N. Microporous adsorbents for CO2 capture—A case for microporous polymers? Mater. Today 2014, 17, 397–403. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Lastoskie, C.M. Carbon dioxide capacity retention on elastic layered metal organic frameworks subjected to hydrothermal cycling. Microporous Mesoporous Mater. 2019, 292, 109371. [Google Scholar] [CrossRef]
- Mangal, S.; Priya, S.; Lewis, N.L.; Jonnalagadda, S. Synthesis and characterization of metal organic framework-based photocatalyst and membrane for carbon dioxide conversion. Mater. Today Proc. 2018, 5, 16378–16389. [Google Scholar] [CrossRef]
- Shen, L.; Liang, R.; Wu, L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chin. J. Catal. 2015, 36, 2071–2088. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, X.; Feng, Y.; Zhang, X.; Wang, H.; Yao, J. Modified metal-organic frameworks as photocatalysts. Appl. Catal. B Environ. 2018, 231, 317–342. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Tan, Q.; Lu, L.; Wang, Z.; Wu, G. Metal–Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO2 Reduction: Progress, Challenges, and Perspectives. Chem.—A Eur. J. 2018, 24, 18137–18157. [Google Scholar] [CrossRef]
- Ding, J.; Ji, S.; Wang, H.; Linkov, V.; Wang, R. Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. J. Power Sources 2019, 423, 51. [Google Scholar] [CrossRef]
- Ding, J.; Ji, S.; Wang, H.; Gai, H.; Liu, F.; Linkov, V.; Wang, R. Mesoporous nickel-sulfide/nickel/N-doped carbon as HER and OER bifunctional electrocatalyst for water electrolysis. Int. J. Hydrogen Energy 2018, 44, 2832–2840. [Google Scholar] [CrossRef]
- Liao, P.-Q.; Shen, J.-Q.; Zhang, J.-P. Metal–organic frameworks for electrocatalysis. Coord. Chem. Rev. 2018, 373, 22–48. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Xu, C.; Huang, S.; Zhu, C.; Jiang, X.; Shao, L.; Hou, L. Hierarchical Porous Co9S8/Nitrogen-Doped Carbon@MoS2 Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 28394–28405. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, W.; Ran, S.; Boles, S.T.; Lee, L.Y.S. Overall Water-Splitting Electrocatalysts Based on 2D CoNi-Metal-Organic Frameworks and Its Derivative. Adv. Mater. Interfaces 2018, 5, 1800849. [Google Scholar] [CrossRef]
- Shao, P.; Yi, L.; Chen, S.; Zhou, T.; Zhang, J. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 2020, 40, 156–170. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Lany, S. Semiconducting transition metal oxides. J. Phys. Condens. Matter 2015, 27, 283203. [Google Scholar] [CrossRef] [PubMed]
- Subudhi, S.; Rath, D.; Parida, K.M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review. Catal. Sci. Technol. 2017, 8, 679–696. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X. Multifunctional Metal-Organic Frameworks for Photocatalysis. Small 2015, 11, 3097–3112. [Google Scholar] [CrossRef]
- Alkhatib, I.I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catal. Today 2018, 340, 209–224. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, Y.; Shi, Y.; Li, M.; Li, J.; Duan, C. Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coord. Chem. Rev. 2018, 380, 201–229. [Google Scholar] [CrossRef]
- Bakuru, V.R.; Dmello, M.E.; Kalidindi, S.B. Metal-Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem 2019, 20, 1177–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Z.; Yang, X.; Li, M.; Chen, C.; Zhang, N. The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework. Microporous Mesoporous Mater. 2017, 258, 55–61. [Google Scholar] [CrossRef]
- Lastoskie, C. Caging Carbon Dioxide. Science 2010, 330, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.P.; Antunes, C.L.; Garate, A.U.; Portela, A.F.; Plaza, M.G.; Mota, J.P.; Esteves, I.A. Binderless shaped metal-organic framework particles: Impact on carbon dioxide adsorption. Microporous Mesoporous Mater. 2018, 275, 111–121. [Google Scholar] [CrossRef]
- Wang, B.; Chen, W.; Song, Y.; Li, G.; Wei, W.; Fang, J.; Sun, Y. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catal. Today 2018, 311, 23–39. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Pan, D.; Zhang, J.; Xu, S.; Gao, L.; Wei, R.; Zhang, J.; Xiao, G. Dual-linker metal-organic frameworks as efficient carbon dioxide conversion catalysts. Appl. Catal. A Gen. 2018, 566, 44–51. [Google Scholar] [CrossRef]
- Li, Y.; Lu, M.; He, P.; Wu, Y.; Wang, J.; Chen, D.; Xu, H.; Gao, J.; Yao, J. Bimetallic Metal-Organic Framework-Derived Nanosheet-Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction. Chem.—Asian J. 2019, 14, 1590–1594. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Yang, L.; Tian, K.; He, L.; Zhang, Z.; Jia, Q.; Song, Y.; Fang, S. Bimetallic metal–organic framework derived FeO /TiO2 embedded in mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-nitrophenol. Sens. Actuators B Chem. 2018, 281, 1063–1072. [Google Scholar] [CrossRef]
- Kim, A.-R.; Yoon, T.-U.; Kim, S.-I.; Cho, K.; Han, S.-S.; Bae, Y.-S. Creating high CO/CO2 selectivity and large CO working capacity through facile loading of Cu(I) species into an iron-based mesoporous metal-organic framework. Chem. Eng. J. 2018, 348, 135–142. [Google Scholar] [CrossRef]
- Molla, R.A.; Ghosh, K.; Banerjee, B.; Iqubal, A.; Kundu, S.K.; Islam, S.M.; Bhaumik, A. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J. Colloid Interface Sci. 2016, 477, 220–229. [Google Scholar] [CrossRef]
- Gong, Y.; Yuan, Y.; Chen, C.; Zhang, P.; Wang, J.; Zhuiykov, S.; Chaemchuen, S.; Verpoort, F. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation. J. Catal. 2019, 371, 106–115. [Google Scholar] [CrossRef]
- Chambers, M.; Wang, X.; Elgrishi, N.; Hendon, C.; Walsh, A.; Bonnefoy, J.; Canivet, J.; Quadrelli, E.A.; Farrusseng, D.; Mellot-Draznieks, C.; et al. Photocatalytic Carbon Dioxide Reduction with Rhodium-based Catalysts in Solution and Heterogenized within Metal-Organic Frameworks. Chemsuschem 2015, 8, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Peera, S.G.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Self-Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Small 2018, 14, e1800441. [Google Scholar] [CrossRef]
- Pokhrel, J.; Bhoria, N.; Wu, C.; Reddy, K.S.K.; Margetis, H.; Anastasiou, S.; George, G.; Mittal, V.; Romanos, G.; Karonis, D.; et al. Cu- and Zr-based metal organic frameworks and their composites with graphene oxide for capture of acid gases at ambient temperature. J. Solid State Chem. 2018, 266, 233–243. [Google Scholar] [CrossRef]
- Zhao, T.; Gao, J.; Wu, J.; He, P.; Li, Y.; Yao, J. Highly Active Cobalt/Tungsten Carbide@N-Doped Porous Carbon Nanomaterials Derived from Metal-Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting. Energy Technol. 2019, 7, 1800969. [Google Scholar] [CrossRef]
- Yadavalli, G.; Lei, H.; Wei, Y.; Zhu, L.; Zhang, X.; Liu, Y.; Yan, D. Carbon dioxide capture using ammonium sulfate surface modified activated biomass carbon. Biomass Bioenergy 2017, 98, 53–60. [Google Scholar] [CrossRef]
- He, L.; Liu, J.; Hu, B.; Liu, Y.; Cui, B.; Peng, D.; Zhang, Z.; Wu, S.; Liu, B. Cobalt oxide doped with titanium dioxide and embedded with carbon nanotubes and graphene-like nanosheets for efficient trifunctional electrocatalyst of hydrogen evolution, oxygen reduction, and oxygen evolution reaction. J. Power Sources 2019, 414, 333–344. [Google Scholar] [CrossRef]
- Lan, R.; Alkhazmi, K.A.; Amar, I.A.; Tao, S. Synthesis of ammonia directly from wet air at intermediate temperature. Appl. Catal. B Environ. 2014, 152–153, 212–217. [Google Scholar] [CrossRef]
- Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2017, 11, 45–56. [Google Scholar] [CrossRef]
- Giddey, S.; Badwal, S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594. [Google Scholar] [CrossRef]
- Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the Electrochemical Synthesis of Ammonia. Catal. Today 2017, 286, 2–13. [Google Scholar] [CrossRef]
- Deng, J.; Iñiguez, J.A.; Liu, C. Electrocatalytic Nitrogen Reduction at Low Temperature. Joule 2018, 2, 846–856. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.-F.; Ding, L.; Chen, X.; Ding, L.-X.; Wang, H. Efficient Electrocatalytic N2 Fixation with MXene under Ambient Conditions. Joule 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Shipman, M.A.; Symes, M.D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68. [Google Scholar] [CrossRef]
- Li, X.; Dong, Q.; Tian, Q.; Sial, A.; Wang, H.; Wen, H.; Pan, B.; Zhang, K.; Qin, J.; Wang, C. Recent advance in metal- and covalent-organic framework-based photocatalysis for hydrogen evolution. Mater. Today Chem. 2022, 26, 101037. [Google Scholar] [CrossRef]
- Hou, W.; Chen, C.; Xie, D.; Xu, Y. Substituted Ti(IV) in Ce-UiO-66-NH2 Metal–Organic Frameworks Increases H2 and O2 Evolution under Visible Light. ACS Appl. Mater. Interfaces 2023, 15, 2911–2921. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, Q.; Qin, C.; Sun, C.; Wang, X.; Su, Z. An Amine-Functionalized Zirconium Metal–Organic Polyhedron Photocatalyst with High Visible-Light Activity for Hydrogen Production. Chem.—A Eur. J. 2018, 25, 2824–2830. [Google Scholar] [CrossRef] [PubMed]
- Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; Álvaro, M.; Ferrer, B.; García, H. Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Appl. Catal. B Environ. 2020, 278, 119345. [Google Scholar] [CrossRef]
- Aziz, A.; Ruiz-Salvador, A.R.; Hernández, N.C.; Calero, S.; Hamad, S.; Grau-Crespo, R. Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: Band gap tuning via iron substitutions. J. Mater. Chem. A 2017, 5, 11894–11904. [Google Scholar] [CrossRef]
- Jaryal, R.; Kumar, R.; Khullar, S. Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coord. Chem. Rev. 2022, 464, 214542. [Google Scholar] [CrossRef]
- Yao, H.; Jin, G.; Sui, G.; Li, J.; Guo, D.; Liang, S.; Luo, Z.; Xu, R.; Wang, C.; Tang, J. ZIF-67-derived ZnIn2S4/NiCoP Z-scheme heterojunctions for enhanced visible-light-driven photocatalytic hydrogen production. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 129991. [Google Scholar] [CrossRef]
- Jin, Z.; Gong, H.; Li, H. Visible-light-driven two-dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 2021, 603, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Antil, B.; Kumar, L.; Das, M.R.; Deka, S. Incorporating NiCoP Cocatalyst into Hollow Rings of ZnCo-Metal–Organic Frameworks to Deliver Pt Cocatalyst like Visible Light Driven Hydrogen Evolution Activity. ACS Appl. Energy Mater. 2022, 5, 11113–11121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez, E.C.R. Metal-Organic Frameworks as Novel Photocatalysts: Opportunities for Catalyst Design. Mater. Proc. 2023, 14, 3. https://doi.org/10.3390/IOCN2023-14541
Lopez ECR. Metal-Organic Frameworks as Novel Photocatalysts: Opportunities for Catalyst Design. Materials Proceedings. 2023; 14(1):3. https://doi.org/10.3390/IOCN2023-14541
Chicago/Turabian StyleLopez, Edgar Clyde R. 2023. "Metal-Organic Frameworks as Novel Photocatalysts: Opportunities for Catalyst Design" Materials Proceedings 14, no. 1: 3. https://doi.org/10.3390/IOCN2023-14541