Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal
Abstract
:1. Introduction
2. Material and Methods
2.1. Environmental Conditions and Experimental Layout
2.2. Soil Sampling and Chemical and Biological Determinations
2.3. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Soil’s Chemical Composition
3.2. Effect of Long-Term Cultivation with Green HDPE Mulch on the Soil’s Enzymatic Activity
3.3. Effect of Long-Term Cultivation with Green HDPE Mulch on Nematode Communities in the Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodhagen, M.; Peyron, M.; Miles, C.; Inglis, D.A. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 2015, 99, 1039–1056. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Carranca, C.; Oliveira, P.; Duarte, E.; Estratégias para redução da pegada dos plásticos de cobertura do solo na produção hortícola. Vida Rural 2021, 1866, 41–44. Available online: https://www.vidarural.pt/shout_edition/vida-rural-no-1866/ (accessed on 13 December 2023).
- Wang, D.; Xi, W.; Shi, X.-Y.; Zhong, Y.-L.; Guo, C.-L.; Han, Y.-N.; Li, F.-M. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environ. Pollut. 2021, 286, 117546. [Google Scholar] [CrossRef]
- Briassoulis, D.; Babou, E.; Hiskakis, M.; Scarascia, G.; Picuno, P.; Guarde, D.; Dejean, C. Review, mapping and analysis of the agricultural plastic waste generation and consolidation in Europe. Water Manag. Res. 2013, 31, 1262–1278. [Google Scholar] [CrossRef]
- Barata, M.C.C.F.T. Estudo da Gestão Eficiente da Água na Cultura do Pimento com Filmes de Cobertura do Solo. Master’s Thesis, ISA/UL, Lisbon, Portugal, 2014; p. 54. [Google Scholar]
- European Comission. A European Strategy for Plastics in a Circular. Economy 2018, 23. Available online: https://www.europarc.org/wp-content/uploads/2018/01/Eu-plastics-strategy-brochure.pdf (accessed on 13 December 2023).
- Rondán, C.E. Nuevas Tendencias en Plasticultura; AIMPLAS: Valencia, Spain, 2023; p. 7. [Google Scholar]
- Pérez, R.; Laca, A.; Laca, A.; Díaz, M. Environmental behaviour of blueberry production at small-scale in Northern Spain and improvement opportunities. J. Clean. Prod. 2022, 339, 130594. [Google Scholar] [CrossRef]
- GPP—Gabinete de Planeamento, Políticas e Administração Geral. Informação Sobre Prod Mirtilo. 2023. Available online: https://www.gpp.pt/index.php/produtos/produtos (accessed on 14 December 2023).
- Dainelli, M.; Pignateli, S.; Bazihizina, N.; Falsini, S.; Papini, A.; Baccelli, I.; Mancuso, S.; Coppi, A.; Castellani, M.B.; Colzi, I.; et al. Can microplastics threaten plant productivity and fruit quality? Insights from ‘Micro-Tom’ and micro-Pet/PVC. Sci. Total Environ. 2023, 895, 165119. [Google Scholar] [CrossRef]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef]
- Appiah, K.S.; Onwona-Agyeman, S.; Omari, R.A.; Horiuchi, N.; Sarkodee-Addo, E.; Sabi, E.B.; Fujii, Y. Evaluation of the effectiveness of loose and compressed wood chip mulch in field-grown blueberries—A preliminary study. Agronomy 2023, 13, 351–361. [Google Scholar] [CrossRef]
- Lalitha, M.; Thilagam, V.K.; Balakrishnan, N.; Mansour, M. Effect of plastic mulch on soil properties and crop growth—A review. Agric. Rev. 2010, 31, 145–149. [Google Scholar]
- Scalzo, J.; Miller, S.; Edwards, C.; Meekings, J.; Alspach, P. ‘Centra Blue’: New rabbiteye blueberry cultivar. ISHS Acta Hortic. 2009, 810. [Google Scholar] [CrossRef]
- Casida, L.E., Jr.; Klein, D.A.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Menino, R.; Felizes, F.; Castelo-Branco, M.A.; Fareleira, P.; Moreira, O.; Nunes, R.; Murta, D. Agricultural value of Black Soldier Fly larvae frass as organic fertilizer on ryegrass. Heliyon 2021, 7, e05855. [Google Scholar] [CrossRef]
- Whitehead, A.G.; Hemming, J.R. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biol. 1965, 55, 25–38. [Google Scholar] [CrossRef]
- Riehm, H. Die ammoniumlaktatessigsaüre–Methodezur Bestimmung der Leichtlöslichen Phosphorsäure in Karbonathaltigen Böden. Agrochimica 1958, 3, 49–65. [Google Scholar]
- Metson, A.J. Methods of chemical analysis for soil survey samples (Hazelton, P.A., Murphy, B.W. (Eds). Interpreting Soil Test Results: What Do All the Numbers Mean? 2nd ed.; New South Wales, Department of Natural Resources, Collingwood, Australia, CSIRO Publishing, 168–175). Soil Bureau Bull. 1961, 12, 30s. [Google Scholar] [CrossRef]
- Lakanen, E.; Ervio, R. A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agral. Fenn. 1971, 123, 223–232. [Google Scholar]
- Faber, J.H.; Hanegraaf, M.C.; Gillikin, A.; Hendriks, C.M.J.; Kuikman, P.J.; Cousin, I.; Bispo, A.; Obiang-Ndong, G.; Montagne, D.; Taylor, A.; et al. Stocktaking for Agricultural Soil Quality and Ecosystem Services Indicators and their Reference Values: EJP SOIL Internal Project SIREN Deliverable 2. Report; EJP Soil Programme, Ed.; Waneningen University: Waneningen, The Netherlands, 2022; 153p. [Google Scholar]
- Ochmian, I.; Malinowskia, R.; Kubusa, M.; Malinowskaa, K.; Sotekb, Z. The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci. Hortic. 2019, 257, 108690. [Google Scholar] [CrossRef]
- Domagała-Świątkiewicz, I.; Siwek, P. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators. Int. Agrophys 2018, 32, 39–47. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Zhang, C.; Wu, W.; Lyu, L.; Li, W. Growth and physiological characteristics of four blueberry cultivars under different high soil pH treatments. Environ. Exp. Bot. 2022, 197, 104842. [Google Scholar] [CrossRef]
- Strik, B.C. A review of optimal systems for organic production of blueberry and blackberry for fresh and processed markets in the northwestern Uited States. Sci. Hortic. 2016, 208, 92–103. [Google Scholar] [CrossRef]
- Tagliavini, M.; Rombolà, A.D. Review. Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur. J. Agron. 2001, 15, 71–92. [Google Scholar] [CrossRef]
- Landi, M.; Degl’Innocenti, E.; Pardossi, A.; Guidi, L. Antioxidant and photosynthetic responses in plants under boron toxicity: A review. Am. J. Agric. Biol. Sci. 2012, 7, 255–270. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Reyes-Díaz, M.; Guerrero, J.; Ondrasek, G. Physiological and nutritional responses in two highbush blueberry cultivars exposed to deficiency and excess of boron. J. Soil Sci. Plant Nutr. 2017, 17, 307–318. [Google Scholar] [CrossRef]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amezaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Bartkowiak, A.; Zielinska, A.; Jaskulska, I.; Rydlewska, M.; Klunek, K.; Polkowska, M. The effect of enzyme activity on carbon sequestration and the cycle of available macro-(P, K, Mg) and microelements (Zn, Cu) in Phaeozems. Agriculture 2023, 13, 172. [Google Scholar] [CrossRef]
- Moreno, M.M.; Peco, J.; Campos, J.; Villena, J.; González, S.; Moreno, C. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop. EGU Gen. Assem. Conf. Abstr. 2016, 18, EGU2016-1581. [Google Scholar]
- Öztürk, H. Community structure of nematodes in olive growing areas in İzmir, Manisa, Balıkesir, and Çanakkale provinces, Türkiye. Harran Tarım Ve Gıda Bilim. Derg. 2023, 27, 175–188. [Google Scholar] [CrossRef]
- Bongers, T.M.B. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Neher, D. Role of nematodes in soil health and their use as bioindicators. J. Nematol. 2001, 33, 161–168. [Google Scholar]
- Chauvin, C.; Trambolho, M.; Hedde, M.; Makowski, D.; Cérémonie, H.; Jimenez, A.; Villenave, C. Soil nematodes as indicators of heavy metal pollution: A meta-analysis. Open J. Soil Sci. 2020, 10, 579–601. [Google Scholar] [CrossRef]
- Salamun, P.; Renco, M.; Kucanova, E.; Brazova, T.; Papajova, I.; Miklisova, D.; Hanzelova, V. Nematodes as bioindicators of soil degradation due to heavy metals. Ecotoxicology 2012, 21, 2319–2330. [Google Scholar] [CrossRef]
Treatment | pH(H2O) | EC | Total N | Org. C | Ext. P | Ext. K | Ca | K | Mg | Na | CEC |
---|---|---|---|---|---|---|---|---|---|---|---|
mS cm−1 | g kg−1 | mg kg−1 | cmol(+) kg−1 | ||||||||
CK soil | 5.8 ± 0.03a | 0.10 ± 0.28a | 1.08 ± 0.05a | 12.9 ± 0.16a | 57.47 ± 0.23a | 104.3 ± 0.15a | 1.40 ± 0.09a | 0.23 ± 0.42a | 0.40 ± 0.30a | 0.07 ± 0.55a | 3.40 ± 0.28a |
10-year-old cultivated soil with HDPE mulch | 5.7 ± 0.15a | 0.07 ± 0.20b | 0.84 ± 0.04b | 10.03 ± 0.10b | 69.57 ± 0.04b | 83.02 ± 0.25a | 0.87 ± 0.46a | 0.19 ± 0.38a | 0.57 ± 0.32a | 0.04 ± 0.26a | 3.33 ± 0.20a |
Treatment | Ext. Cu | Ext. Zn | Ext. Fe | Ext. Mn | Ext. B |
---|---|---|---|---|---|
mg kg−1 | |||||
CK soil | 2.3 ± 0.10a | 2.4 ± 0.42a | 227 ± 0.10a | 6.0 ± 0.28a | 0.21 ± 0.05a |
10-year-old cultivated soil with green HDPE mulch | 1.2 ± 0.29b | 0.8 ± 0.15a | 207 ± 0.14a | <2.5 ± ndb | <0.20 ± ndb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedra, F.; Inácio, M.L.; Fareleira, P.; Oliveira, P.; Pereira, P.; Carranca, C. Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal. Pollutants 2024, 4, 16-25. https://doi.org/10.3390/pollutants4010002
Pedra F, Inácio ML, Fareleira P, Oliveira P, Pereira P, Carranca C. Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal. Pollutants. 2024; 4(1):16-25. https://doi.org/10.3390/pollutants4010002
Chicago/Turabian StylePedra, Filipe, Maria L. Inácio, Paula Fareleira, Pedro Oliveira, Pablo Pereira, and Corina Carranca. 2024. "Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal" Pollutants 4, no. 1: 16-25. https://doi.org/10.3390/pollutants4010002
APA StylePedra, F., Inácio, M. L., Fareleira, P., Oliveira, P., Pereira, P., & Carranca, C. (2024). Long-Term Effects of Plastic Mulch in a Sandy Loam Soil Used to Cultivate Blueberry in Southern Portugal. Pollutants, 4(1), 16-25. https://doi.org/10.3390/pollutants4010002