The global transition toward sustainable energy has significantly accelerated the deployment of solar power systems. Yet, the inherent variability of solar energy continues to present considerable challenges in ensuring its stable and efficient integration into modern power grids. As the demand for clean
[...] Read more.
The global transition toward sustainable energy has significantly accelerated the deployment of solar power systems. Yet, the inherent variability of solar energy continues to present considerable challenges in ensuring its stable and efficient integration into modern power grids. As the demand for clean and dependable energy sources intensifies, the integration of artificial intelligence (AI) with solar systems, particularly those coupled with energy storage, has emerged as a promising and increasingly vital solution. It explores the practical applications of machine learning (ML), deep learning (DL), fuzzy logic, and emerging generative AI models, focusing on their roles in areas such as solar irradiance forecasting, energy management, fault detection, and overall operational optimisation. Alongside these advancements, the review also addresses persistent challenges, including data limitations, difficulties in model generalization, and the integration of AI in real-time control scenarios. We included peer-reviewed journal articles published between 2015 and 2025 that apply AI methods to PV + ESS, with empirical evaluation. We excluded studies lacking evaluation against baselines or those focusing solely on PV or ESS in isolation. We searched IEEE Xplore, Scopus, Web of Science, and Google Scholar up to 1 July 2025. Two reviewers independently screened titles/abstracts and full texts; disagreements were resolved via discussion. Risk of bias was assessed with a custom tool evaluating validation method, dataset partitioning, baseline comparison, overfitting risk, and reporting clarity. Results were synthesized narratively by grouping AI techniques (forecasting, MPPT/control, dispatch, data augmentation). We screened 412 records and included 67 studies published between 2018 and 2025, following a documented PRISMA process. The review revealed that AI-driven techniques significantly enhance performance in solar + battery energy storage system (BESS) applications. In solar irradiance and PV output forecasting, deep learning models in particular, long short-term memory (LSTM) and hybrid convolutional neural network–LSTM (CNN–LSTM) architectures repeatedly outperform conventional statistical methods, obtaining significantly lower Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and higher R-squared. Smarter energy dispatch and market-based storage decisions are made possible by reinforcement learning and deep reinforcement learning frameworks, which increase economic returns and lower curtailment risks. Furthermore, hybrid metaheuristic–AI optimisation improves control tuning and system sizing with increased efficiency and convergence. In conclusion, AI enables transformative gains in forecasting, dispatch, and optimisation for solar-BESSs. Future efforts should focus on explainable, robust AI models, standardized benchmark datasets, and real-world pilot deployments to ensure scalability, reliability, and stakeholder trust.
Full article