Unawareness and Theorizing in Modern Geology: Two Examples Based on Citation Analysis
Abstract
:1. Introduction
2. General Methodological Remarks
3. Case A: Eustatic Reconstructions
4. Case B: End-Pleistocene Extraterrestrial Impact
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Feenberg, A. Critical theory of technology and STS. Thesis Elev. 2017, 138, 3–12. [Google Scholar] [CrossRef]
- Hess, D.J. Neoliberalism and the History of STS Theory: Toward a Reflexive Sociology. Soc. Epistemol. 2013, 27, 177–193. [Google Scholar] [CrossRef]
- Kihara, H. The Neoliberal Transformation of STS in Japan. A J. Knowl. Cult. Policy 2013, 27, 145–162. [Google Scholar] [CrossRef]
- Matsumoto, M. Theoretical challenges for the current sociology of science and technology: A prospect for its future development. East Asian Sci. Technol. Soc. 2010, 4, 129–136. [Google Scholar] [CrossRef]
- Nakajima, H. STS Towards the Twenty-first Century. Sci. Technol. Soc. 1999, 4, 55–58. [Google Scholar] [CrossRef]
- Ogg, J.G.; Ogg, G.M.; Gradstein, F.M. A Concise Geologic Time Scale 2016; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Ruban, D.A. Geologic time scales in modern books: A failure of standardization? Proc. Geol. Assoc. 2011, 122, 347–353. [Google Scholar] [CrossRef]
- Alvarez, W.T. The story that waited 65 million years to be told—How a giant impact killed the dinosaurs, and how the crater was discovered. In Rex and the Crater of Doom; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- Courtillot, V. Evolutionary Catastrophes—The Science of Mass Extinction; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hull, P.M.; Bornemann, A.; Penman, D.E.; Henehan, M.J.; Norris, R.D.; Wilson, P.A.; Blum, P.; Alegret, L.; Batenburg, S.J.; Bown, P.R.; et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 2020, 367, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Keller, G. Biotic effects of impacts and volcanism. Earth Planet. Sci. Lett. 2003, 215, 249–264. [Google Scholar] [CrossRef]
- Schoene, B.; Eddy, M.P.; Samperton, K.M.; Keller, C.B.; Keller, G.; Adatte, T.; Khadri, S.F.R. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 2019, 363, 862–866. [Google Scholar] [CrossRef]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prothero, D.L. Greenhouse Of The Dinosaurs: Evolution, Extinction, and the Future of Our Planet; Columbia University Press: New York, NY, USA, 2009. [Google Scholar]
- Ruban, D.A. A “chaos” of Phanerozoic eustatic curves. J. Afr. Earth Sci. 2016, 116, 225–232. [Google Scholar] [CrossRef]
- Van Hoesel, A.; Hoek, W.Z.; Pennock, G.M.; Drury, M.R. The Younger Dryas impact hypothesis: A critical review. Quat. Sci. Rev. 2014, 83, 95–114. [Google Scholar] [CrossRef]
- Franssen, T.; Wouters, P. Science and its significant other: Representing the humanities in bibliometric scholarship. J. Assoc. Inf. Sci. Technol. 2019, 70, 1124–1137. [Google Scholar] [CrossRef]
- Gerdel, W. Scope, methods and results of scientometry and bibliometry for planning and research. Methods Inf. Med. 1976, 15, 259–261. [Google Scholar]
- Giske, J. Benefitting from bibliometry. Ethics Sci. Environ. Politics 2008, 8, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Motoyama, Y.; Eisler, M.N. Bibliometry and nanotechnology: A meta-analysis. Technol. Forecast. Soc. Chang. 2011, 78, 1174–1182. [Google Scholar] [CrossRef]
- Prashar, A.; Sunder, M.V. A bibliometric and content analysis of sustainable development in small and medium-sized enterprises. J. Clean. Prod. 2020, 245, 118665. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Sepm Spec. Publ. 1988, 42, 71–108. [Google Scholar]
- Abreu, V.S.; Anderson, J.B. Glacial eustasy during the Cenozoic: Sequence stratigraphic implications. Aapg Bull. 1998, 82, 1385–1400. [Google Scholar]
- Cao, W.; Flament, N.; Zahirovic, S.; Williams, S.; Müller, R.D. The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics 2019, 761, 108–121. [Google Scholar] [CrossRef]
- Hallam, A. Pre-Quaternary sea-level changes (Phanerozoic eustasy). Annu. Rev. Earth Planet. Sci. 1984, 12, 205–244. [Google Scholar] [CrossRef]
- Hallam, A. A reevaluation of Jurassic eustasy in the light of new data and the revised Exxon curve. Sepm Spec. Publ. 1988, 42, 261–273. [Google Scholar]
- Hallam, A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 167, 23–37. [Google Scholar] [CrossRef]
- Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: An error analysis. Basin Res. 2008, 20, 211–226. [Google Scholar] [CrossRef]
- Miller, K.G.; Kominz, M.A.; Browning, J.V.; Wright, J.D.; Mountain, G.S.; Katz, M.E.; Sugarman, P.J.; Cramer, B.S.; Christie-Blick, N.; Pekar, S.F. The Phanerozoic record of global sea-level change. Science 2005, 310, 1293–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Steinberger, B.; Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 2008, 319, 1357–1362. [Google Scholar] [CrossRef]
- Ruban, D.A.; Zorina, S.O.; Conrad, C.P.; Afanasieva, N.I. In quest of Paleocene global-scale transgressions and regressions: Constraints from a synthesis of regional trends. Proc. Geol. Assoc. 2012, 123, 7–18. [Google Scholar] [CrossRef]
- Haq, B.U.; Al-Qahtani, A.M. Phanerozoic cycles of sea-level change on the Arabian platform. GeoArabia 2005, 10, 127–160. [Google Scholar]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Haq, B.U. Cretaceous eustasy revisited. Glob. Planet. Chang. 2014, 113, 44–58. [Google Scholar] [CrossRef]
- Haq, B.U. Jurassic sea-level variations: A reappraisal. GSA Today 2018, 28, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Haq, B.U. Triassic eustatic variations reexamined. GSA Today 2018, 28, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Bakke, J.; Lie, O.; Heegaard, E.; Dokken, T.; Haug, G.H.; Birks, H.H.; Dulski, P.; Nilsen, T. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nat. Geosci. 2009, 2, 202–205. [Google Scholar] [CrossRef]
- Broecker, W.S.; Denton, G.H.; Edwards, R.L.; Cheng, H.; Alley, R.B.; Putnam, A.E. Putting the Younger Dryas cold event into context. Quat. Sci. Rev. 2010, 29, 1078–1081. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Meeker, L.D.; Whitlow, S.; Twickler, M.S.; Morrison, M.C.; Alley, R.B.; Bloomfield, P.; Taylor, K. The atmosphere during the Younger Dryas. Science 1993, 261, 195–197. [Google Scholar] [CrossRef]
- Martin, P.S. Twilight of the Mammoths: Ice Age Extinctions and the Rewilding of America; University of California Press: Berkeley, CA, USA, 2005. [Google Scholar]
- Stuart, A.J. Late Quaternary megafaunal extinctions on the continents: A short review. Geol. J. 2015, 50, 338–363. [Google Scholar] [CrossRef]
- Firestone, R.B.; West, A.; Kennett, J.P.; Becker, L.; Bunch, T.E.; Revay, Z.S.; Schultz, P.H.; Belgya, T.; Kennett, D.J.; Erlandson, J.M.; et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 16016–16021. [Google Scholar] [CrossRef] [Green Version]
- Haynes, C.V., Jr. V. Younger Dryas "black mats" and the Rancholabrean termination in North America. Proc. Natl. Acad. Sci. USA 2008, 105, 6520–6525. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A. The survival of megafauna after the end-Pleistocene impact: A lesson from the Cretaceous/Tertiary boundary. Geologos 2009, 15, 129–132. [Google Scholar]
- Bunch, T.E.; West, A.; Firestone, R.B.; Kennett, J.P.; Wittke, J.H.; Kinzie, C.R.; Wolbach, W.S. Geochemical data reported by Paquay et al. do not refute Younger Dryas impact event. Proc. Natl. Acad. Sci. USA 2010, 107, E58. [Google Scholar] [CrossRef] [Green Version]
- Firestone, R.B.; West, A.; Bunch, T.E. Confirmation of the Younger Dryas boundary (YDB) data at Murray Springs, AZ. Proc. Natl. Acad. Sci. USA 2010, 107, E105. [Google Scholar] [CrossRef] [Green Version]
- Hagstrum, J.T.; Firestone, R.B.; West, A.; Weaver, J.C.; Bunch, T.E. Impact-related microspherules in Late Pleistocene Alaskan and Yukon "muck" deposits signify recurrent episodes of catastrophic emplacement. Sci. Rep. 2017, 7, 16620. [Google Scholar] [CrossRef] [Green Version]
- Israde-Alcántara, I.; Bischoff, J.L.; Domínguez-Vázquez, G.; Li, H.-C.; DeCarli, P.S.; Bunch, T.E.; Wittke, J.H.; Weaver, J.C.; Firestone, R.B.; West, A.; et al. Evidence from Central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc. Natl. Acad. Sci. USA 2012, 109, E738–E747. [Google Scholar] [CrossRef] [Green Version]
- Kennett, J.P.; Kennett, D.J.; Culleton, B.J.; Tortosa, J.E.A.; Bischoff, J.L.; Bunch, T.E.; Daniel, I.R., Jr.; Erlandson, J.M.; Ferraro, D.; Firestone, R.B.; et al. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents. Proc. Natl. Acad. Sci. USA 2015, 112, E4344–E4353. [Google Scholar] [CrossRef] [Green Version]
- Kinzie, C.R.; Hee, S.S.Q.; Stich, A.; Tague, K.A.; Mercer, C.; Razink, J.J.; Kennett, D.J.; DeCarli, P.S.; Bunch, T.E.; Wittke, J.H.; et al. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. J. Geol. 2014, 122, 475–506. [Google Scholar] [CrossRef] [Green Version]
- Mahaney, W.C.; Keiser, L.; Krinsley, D.; Kalm, V.; Beukens, R.; West, A. New evidence from a black mat site in the Northern Andes supporting a cosmic impact 12,800 years ago. J. Geol. 2013, 121, 309–325. [Google Scholar] [CrossRef]
- Moore, A.M.T.; Kennett, J.P.; Napier, W.M.; Bunch, T.E.; Weaver, J.C.; LeCompte, M.; Adedeji, A.V.; Hackley, P.; Kletetschka, G.; Hermes, R.E.; et al. Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C. Sci. Rep. 2020, 10, 4185. [Google Scholar] [CrossRef]
- Napier, W.M. The hazard from fragmenting comets. Mon. Not. R. Astron. Soc. 2019, 488, 1822–1827. [Google Scholar] [CrossRef]
- Pino, M.; Abarzúa, A.M.; Astorga, G.; Martel-Cea, A.; Cossio-Montecinos, N.; Navarro, R.X.; Lira, M.P.; Labarca, R.; LeCompte, M.A.; Adedeji, V.; et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci. Rep. 2019, 9, 4413. [Google Scholar] [CrossRef]
- Wittke, J.H.; Weaver, J.C.; Bunch, T.E.; Kennett, J.P.; Kennett, D.J.; Moore, A.M.T.; Hillman, G.C.; Tankersley, K.B.; Goodyear, A.C.; Moore, C.R.; et al. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proc. Natl. Acad. Sci. USA 2013, 110, E2088–E2097. [Google Scholar] [CrossRef] [Green Version]
- Wolbach, W.S.; Ballard, J.P.; Mayewski, P.A.; Adedeji, V.; Bunch, T.E.; Firestone, R.B.; French, T.A.; Howard, G.A.; Israde-Alcántara, I.; Johnson, J.R.; et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 1. Ice cores and glaciers. J. Geol. 2018, 126, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Wolbach, W.S.; Ballard, J.P.; Mayewski, P.A.; Parnell, A.C.; Cahill, N.; Adedeji, V.; Bunch, T.E.; Domínguez-Vázquez, G.; Erlandson, J.M.; Firestone, R.B.; et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ~12,800 years ago. 2. Lake, marine, and terrestrial sediments. J. Geol. 2018, 126, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Bement, L.C.; Madden, A.S.; Carter, B.J.; Simms, A.R.; Swindle, A.L.; Alexander, H.M.; Fine, S.; Benamara, M. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma Panhandle, USA. Proc. Natl. Acad. Sci. USA 2014, 111, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Boslough, M.; Harris, A.W.; Chapman, C.; Morrison, D. Younger Dryas impact model confuses comet facts, defies airburst physics. Proc. Natl. Acad. Sci. USA 2013, 110, E4170. [Google Scholar] [CrossRef] [Green Version]
- Daulton, T.L.; Amari, S.; Scott, A.C.; Hardiman, M.; Pinter, N.; Anderson, R.S. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. J. Quat. Sci. 2017, 32, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Holliday, V.T.; Surovell, T.; Meltzer, D.J.; Grayson, D.K.; Boslough, M. The Younger Dryas impact hypothesis: A cosmic catastrophe. J. Quat. Sci. 2014, 29, 515–530. [Google Scholar] [CrossRef]
- Pinter, N.; Ishman, S.E. Impacts, mega-tsunami, and other extraordinary claims. Gsa Today 2008, 18, 37. [Google Scholar] [CrossRef]
- Scott, A.C.; Pinter, N.; Collinson, M.E.; Hardiman, M.; Anderson, R.S.; Brain, A.P.R.; Smith, S.Y.; Marone, F.; Stampanoni, M. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas "impact layer". Geophys. Res. Lett. 2016, 37, L14302. [Google Scholar] [CrossRef] [Green Version]
- Surovell, T.A.; Holliday, V.T.; Gingerich, J.A.M.; Ketron, C.; Haynes, C.V., Jr.; Hilman, I.; Wagner, D.P.; Johnson, E.; Claeys, P. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proc. Natl. Acad. Sci. USA 2009, 106, 18155–18158. [Google Scholar] [CrossRef] [Green Version]
- Van Hoesel, A.; Hoek, W.Z.; Pennock, G.M.; Kaiser, K.; Plümper, O.; Jankowski, M.; Hamers, M.F.; Schlaak, N.; Küster, M.; Andronikov, A.V.; et al. A search for shocked quartz grains in the Allerød-Younger Dryas boundary layer. Meteorit. Planet. Sci. 2015, 50, 483–498. [Google Scholar] [CrossRef]
- Fernandez, K.V. Critically reviewing literature: A tutorial for new researchers. Australas. Mark. J. 2019, 27, 187–196. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Weinfurtner, T.; Seidl, D. Towards a spatial perspective: An integrative review of research on organisational space. Scand. J. Manag. 2019, 35, 101009. [Google Scholar] [CrossRef]
- López-Duarte, C.; Vidal-Suárez, M.M.; González-Díaz, B. Expatriate management and national culture: A bibliometric study of prolific, productive, and most cited authors and institutions. Int. J. Hum. Resour. Manag. 2020, 31, 805–833. [Google Scholar] [CrossRef]
- Ramona, O.; Cristina, M.S.; Raluca, S. Bitcoin in the scientific literature—A bibliometric study. Stud. Bus. Econ. 2020, 14, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Sun, X.; Liu, Y. Bibliometric analysis of supplier management: The theme and cluster perspectives. Sustainability 2020, 12, 2572. [Google Scholar] [CrossRef] [Green Version]
- Renda, C. Some Thoughts on Emotional Atmospheres as a Category of Situational Sociology. Koln. Z. Für Soziologie Und Soz. 2018, 70, 629–654. [Google Scholar] [CrossRef]
- Rusu, M.S. Theorising love in sociological thought: Classical contributions to a sociology of love. J. Class. Sociol. 2018, 18, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Camargo, J.M.R.; Silva, M.V.B.; Júnior, A.V.F.; Araújo, T.C.M. Marine geohazards: A bibliometric-based review. Geosciences 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.T.; Ho, Y.S. Bibliometric analysis of tsunami research. Scientometrics 2007, 73, 3–17. [Google Scholar] [CrossRef]
- Gizzi, F.T. Worldwide trends in research on the San Andreas Fault System. Arab. J. Geosci. 2015, 8, 10893–10909. [Google Scholar] [CrossRef]
- Liu, X.; Zhan, F.B.; Hong, S.; Niu, B.; Liu, Y. A bibliometric study of earthquake research: 1900-2010. Scientometrics 2012, 92, 747–765. [Google Scholar] [CrossRef]
- Marx, W.; Bornmann, L. The emergence of plate tectonics and the Kuhnian model of a paradigm shift: A bibliometric case study based on the Anna Karenina principle. Scientometrics 2013, 94, 595–614. [Google Scholar] [CrossRef]
- Stead, D.; Wolter, A. A critical review of rock slope failure mechanisms: The importance of structural geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Catuneanu, O. Sequence stratigraphy in the context of the ‘modeling revolution’. Mar. Pet. Geol. 2020, 116, 104309. [Google Scholar] [CrossRef]
- Nurgalieva, N.G.; Vinokurov, V.M.; Nurgaliev, D.K. The Golovkinsky strata formation model, basic facies law and sequence stratigraphy concept: Historical sources and relations. Russ. J. Earth Sci. 2007, 9, ES1003. [Google Scholar] [CrossRef]
- Qayyum, F.; Betzler, C.; Catuneanu, O. The Wheeler diagram, flattening theory, and time. Mar. Pet. Geol. 2017, 86, 1417–1430. [Google Scholar] [CrossRef]
- Miller, K.G.; Browning, J.V.; Schmelz, W.J.; Kopp, R.E.; Mountain, G.S.; Wright, J.D. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 2020, 6, eaaz1346. [Google Scholar] [CrossRef]
- Elewa, A.M.T.; Abdelhady, A.A. Past, present, and future mass extinctions. J. Afr. Earth Sci. 2020, 162, 103678. [Google Scholar] [CrossRef]
- Ruban, D.A. A possible contribution of volcanism to the end-Pleistocene megafaunal extinction. Nat. Nascosta 2009, 39, 26–32. [Google Scholar]
- Gibbard, P.L.; Lewin, J. Partitioning the Quaternary. Quat. Sci. Rev. 2016, 151, 127–139. [Google Scholar] [CrossRef]
- Head, M.J. Formal subdivision of the Quaternary System/Period: Present status and future directions. Quat. Int. 2019, 500, 32–51. [Google Scholar] [CrossRef]
- Lanata, J.L.; Briones, C.; Monjeau, A. The Anthropocene controversy as opportunity: A matter of approaches rather than formal designations. Interciencia 2017, 42, 186–189. [Google Scholar]
- Nikolov, T.; Hristova, R. Anthropocene versus Holocene in the light of the principles of stratigraphy. Comptes Rendus De L’academie Bulg. Des Sci. 2020, 73, 236–243. [Google Scholar]
- Ruddiman, W.F. Three flaws in defining a formal ‘Anthropocene’. Prog. Phys. Geogr. 2018, 42, 451–461. [Google Scholar] [CrossRef]
- Smith, F.A.; Elliott Smith, R.E.; Lyons, S.K.; Payne, J.L.; Villaseñor, A. The accelerating influence of humans on mammalian macroecological patterns over the late Quaternary. Quat. Sci. Rev. 2019, 211, 1–16. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruban, D.A. Unawareness and Theorizing in Modern Geology: Two Examples Based on Citation Analysis. Earth 2020, 1, 1-14. https://doi.org/10.3390/earth1010001
Ruban DA. Unawareness and Theorizing in Modern Geology: Two Examples Based on Citation Analysis. Earth. 2020; 1(1):1-14. https://doi.org/10.3390/earth1010001
Chicago/Turabian StyleRuban, Dmitry A. 2020. "Unawareness and Theorizing in Modern Geology: Two Examples Based on Citation Analysis" Earth 1, no. 1: 1-14. https://doi.org/10.3390/earth1010001