The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview
Abstract
:1. Introduction
2. Water Resources in the Mediterranean Area
3. Materials and Methods
4. Results
4.1. Major Water Quality-Related Problems in Mediterranean Countries
- (i)
- Chemical and Biological Water Pollution
- (ii)
- Water salinization
4.2. Major Water Quantity-Related Problems in Mediterranean Countries
- (i)
- Improper or absent infrastructures
- (ii)
- Transboundary waters issues
5. Discussion
5.1. Water Quality-Related Problems: From Evidence to Possible Solutions
- (i)
- Denitrification processes, bioremediation techniques, disinfection technologies
- (ii)
- Desalination of renewable sources
5.2. Water Quantity-Related Problems: Possible Solutions
- (i)
- Water infrastructures and irrigation efficiency, increase in private investments
- (ii)
- Integrated Water Resources Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN Global compact. UN Sustainable Development Goals. 2015. Available online: https://www.unglobalcompact.org/what-is-gc/our-work/sustainable-development/sdgs/17-global-goals (accessed on 16 December 2020).
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-based solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environ. Resour. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- De Oliveira Campos, P.C.; da Silva Rocha Paz, T.; Lenz, L.; Qiu, Y.; Paz, I. A study on sustainable alternatives to face the urbanization of the open channel of the Cehab, a tributary of the Muriaé river, (Itaperuna, Rio de Janeiro). Sustainability 2020, 12, 6493. [Google Scholar]
- Zhang, G.P.; Hoekstra, A.Y.; Mathews, R.E. Water Footprint Assessment (WFA) for better water governance and sustainable development. Water Resour. Ind. 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.J.; Bailey, R.M.; Cullis, J.D.S.; New, M.G. Water for sustainable development in the Berg Water Management Area, South Africa. S. Afr. J. Sci. 2018, 114, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Zhou, H.; Deng, C.; Fang, C. Analysis of sustainable utilization of water resources based on the improved water resources ecological footprint model: A case study of Hubei Province, China. J. Environ. Manag. 2020, 262, 11031. [Google Scholar] [CrossRef] [PubMed]
- Lasagna, M.; Bonetto, S.M.R.; Debernardi, L.; De Luca, D.A.; Semita, C.; Caselle, C. Groundwater resources assessment for sustainable development in South Sudan. Sustainability 2020, 12, 14. [Google Scholar] [CrossRef]
- United Nation. The Sustainable Development Goals Report 2020; UN: New York, NY, USA, 2020.
- WWAP (UNESCO World Water Assessment Programme). The United Nations World Water Development Report 2019: Leaving No One Behind; UNESCO: Paris, France, 2020. [Google Scholar]
- Sorlini, S.; Rondi, L.; Pollmann Gomez, A.; Collivignarelli, C. Appropriate technologies for drinking water treatment in mediterranean Countries. Environ. Eng. Manag. J. 2015, 14, 1721–1733. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 17. [Google Scholar] [CrossRef]
- Riccaboni, A.; Sachs, J.; Cresti, S.; Gigliotti, M.; Pulselli, R.M. Sustainable Development in the Mediterranean. Report 2020. Transformations to Achieve the Sustainable Development Goals; SDSN Mediterranean: Siena, Italy, 2020. [Google Scholar]
- Burak, S.; Margat, J. Water Management in the Mediterranean Region: Concepts and Policies. Water Resour. Manag. 2016, 30, 5779–5797. [Google Scholar] [CrossRef]
- World Bank. Available online: https://www.worldbank.org/ (accessed on 12 December 2020).
- Rossano, C.; Milstein, A.; Nuccio, C.; Tamburini, E.; Scapini, F. Variables affecting the plankton network in Mediterranean ports. Mar. Pollut. Bull. 2020, 158, 111362. [Google Scholar] [CrossRef]
- UN. World Water Development Report 2020: Water and Climate Change. Available online: https://www.unwater.org/publications/world-water-development-report-2020/ (accessed on 12 December 2020).
- FAO. AQUASTAT Core Database. Food and Agricolture Organization of the United Nations. Available online: https://www.fao.org/aquastat/en/ (accessed on 24 September 2020).
- Hossain, M.B.; Mertig, A.G. Socio-structural forces predicting global water footprint: Socio-hydrology and ecologically unequal exchange. Hydrol. Sci. J. 2020, 65, 495–506. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations, Rome and Earthscan: London, UK, 2011.
- Lutter, S.; Schnepf, D. Water management indicators—State of the art for the Mediterranean Region. In Dialogues on Mediterranean Water Challenges: Rational Water Use, Water Price versus Value and Lessons Learned from the European Water Framework Directive; CIHEAM: Bari, Italy, 2011. [Google Scholar]
- Liu, Y.; Chen, B.; Wei, W.; Shao, L.; Li, Z.; Jiang, W.; Chen, G. Global water use associated with energy supply, demand and international trade of China. Appl. Energy 2020, 257, 113992. [Google Scholar] [CrossRef]
- FAO. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; FAO: Rome, Italy, 2013; Volume 38.
- Falkenmark, M.; Kijne, J.W.; Taron, B.; Murdoch, G.; Sivakumar, M.V.K.; Craswell, E. Meeting Water Requirements of an Expanding World Population. Philos. Trans. Biol. Sci. 1997, 352, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Water scarcity challenges to business. Nat. Clim. Chang. 2014, 4, 318–320. [Google Scholar] [CrossRef]
- Gleick, P.; Iceland, C.; Trivedi, A. Ending Conflicts over Water Solutions to Water and Security Challenges; World Resource Institute: Washington, DC, USA, 2020. [Google Scholar]
- Suzdaleva, A.L. Russia and global water crisis. World Econ. Int. Relat. 2020, 64, 53–59. [Google Scholar] [CrossRef]
- United Nation. UN-WATER SDG 6 Data Portal. Available online: https://www.sdg6data.org/ (accessed on 30 November 2020).
- WHO. The Global JMP Database. UNICEF. Available online: https://www.who.int/water_sanitation_health/publications/jmp-2019-full-report.pdf?ua=1 (accessed on 30 November 2020).
- Cerar, S.; Mali, N. Assessment of presence, origin and seasonal variations of persistent organic pollutants in groundwater by means of passive sampling and multivariate statistical analysis. J. Geochem. Explor. 2016, 170, 78–93. [Google Scholar] [CrossRef]
- Curk, M.; Glavan, M.; Pintar, M. Analysis of Nitrate Pollution Pathways on a Vulnerable Agricultural Plain in Slovenia: Taking the Local Approach to Balance Ecosystem Services of Food and Water. Water 2020, 12, 707. [Google Scholar] [CrossRef] [Green Version]
- Ogrinc, N.; Tamse, S.; Zavadlava, S.; Vrzel, J.; Jin, L. Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Sci. Total Environ. 2019, 646, 1588–1600. [Google Scholar] [CrossRef]
- Balestrini, R.; Delconte, C.A.; Sacchi, E.; Buffagni, A. Groundwater-dependent ecosystems as transfer vectors of nitrogen from the aquifer to surface waters in agricultural basins: The fontanili of the Po Plain (Italy). Sci. Total Environ. 2021, 753, 141995. [Google Scholar] [CrossRef]
- Nakić, Z.; Kovač, Z.; Parlov, J.; Perković, D. Ambient Background Values of Selected Chemical Substances in Four Groundwater Bodies in the Pannonian Region of Croatia. Water 2020, 12, 2671. [Google Scholar] [CrossRef]
- Muratoglu, A. Assessment of wheat’s water footprint and virtual water trade: A case study for Turkey. Ecol. Process. 2020, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.P.; Zahran, A.; Mahmoud, M.; Ye, K. Evaluation of water quality using acceptance sampling by variables. Envirometrics 2003, 14, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Mentzafou, A.; Dimitriou, E. Nitrogen loading and natural pressures on the water quality of a shallow Mediterranean lake. Sci. Total Environ 2019, 646, 134–143. [Google Scholar] [CrossRef]
- Canpolat, O.; Varol, M.; Okan, O.O.; Eris, K.K.; Caglar, M. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environ. Res. 2020, 190, 110012. [Google Scholar] [CrossRef] [PubMed]
- Sehlaoui, H.; Hassikou, R.; Moussadek, R.; Zouahri, A.; Douaik, A.; Iiaach, H.; Ghanimi, A.; Dakak, H. Evaluation of water quality for agricultural suitability in the Benslimane region, Morocco. Environ. Monit. Assess. 2020, 192, 587. [Google Scholar] [CrossRef]
- Omrania, S.; El Khodrani, N.; Zouahri, A.; Douaik, A.; Iaaich, H.; Lahmar, M.; El Hajjaji, S. Evaluation of the groundwater quality of the M’nasra, Kenitra (Morocco). Mater. Today Proc. 2019, 13, 1092–1101. [Google Scholar]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Bouderbala, A. Assessment of the Impact of Climatic Variability and Human Activities on Groundwater Quality: Case of Mitidja Plain, North of Algeria. In Euro-Mediterranean Conference for Environmental Integration; Springer: Cham, Switzerland, 2018; pp. 607–609. [Google Scholar]
- Drouiche, N.; Khacheba, R.; Soni, R. Water Policy in Algeria. In Water Policies in MENA Countries; Zekri, S., Ed.; Springer: Cham, Switzerland, 2020; Volume 23. [Google Scholar]
- Ameur, M.; Hamzaoui-Azaza, F.; Gueddari, M. Nitrate contamination of Sminja aquifer groundwater in Zaghouan, northeast Tunisia: WQI and GIS assessments. Desalin. Water Treat. 2016, 57, 1–11. [Google Scholar] [CrossRef]
- Hegazy, D.; Abotalib, A.Z.; El-Bastaweesy, M.; El-Said, M.; Melegy, A.; Garamoon, H. Geo-environmental impacts of hydrogeological setting and anthropogenic activities on water quality in the Quaternary aquifer southeast of the Nile Delta, Egypt. J. Afr. Earth Sci. 2020, 172, 103947. [Google Scholar] [CrossRef]
- Council Directive. Concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Off. J. 1991, 375, 1–8. [Google Scholar]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy, 1–72, Strasbourg. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02000L0060-20140101&from=ET. (accessed on 23 November 2020).
- Deda, A.; Alushillari, M.; Mico, S. Measurement of heavy metal concentrations in groundwater. AIP Conf. Proc. 2019, 2109, 100001. [Google Scholar]
- Karaouzas, I.; Kapetanaki, N.; Mentzafou, A.; Kanellopoulos, T.D.; Skoulikidis, N. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere 2021, 263, 128192. [Google Scholar] [CrossRef]
- Jisr, N.; Younes, G.; El Omari, K.; Hamze, M.; Sukhn, C.; El-Dakdouki, M.H. Levels of heavy metals, total petroleum hydrocarbons, and microbial load in commercially valuable fish from the marine area of Tripoli, Lebanon. Environ. Monit. Assess 2020, 192, 705. [Google Scholar] [CrossRef] [PubMed]
- Mottes, C.; Deffontaines, L.; Charlier, J.B.; Comte, I.; Della Rossa, P.; Lesueur-Jannoyer, M.; Woignier, T.; Adele, G.; Tailame, A.-N. Spatio-temporal variability of water pollution by chlordecone at the watershed scale: What insights for the management of polluted territories? Environ. Sci. Pollut. Res. 2020, 27, 41013. [Google Scholar] [CrossRef]
- Postigo Mourad, K.A. A water compacts for sustainable water management. Sustainability 2020, 12, 18. [Google Scholar]
- Jabali, Y.; Millet, M.; El-Hoz, M. Spatio-temporal distribution and ecological risk assessment of pesticides in the water resources of Abou Ali River, Northern Lebanon. Environ. Sci. Pollut. Res. 2020, 27, 17997–18012. [Google Scholar] [CrossRef] [PubMed]
- Bolívar-Subirats, G.; Rivetti, C.; Cortina-Puig, M.; Barata, C.; Lacorte, S. Occurrence, toxicity and risk assessment of plastic additives in Besos river, Spain. Chemosphere 2021, 263, 128022. [Google Scholar] [CrossRef]
- Lechthaler, S.; Schwarzbauer, J.; Reicherter, K.; Stauch, G.; Schüttrumpf, H. Regional study of microplastics in surface waters and deepsea sediments south of the Algarve Coast. Reg. Stud. Mar. Sci. 2020, 40, 101488. [Google Scholar] [CrossRef]
- Jais, N.M.; Mohamed, R.M.S.R.; Al-Gheethi, A.A.; Amir Hashim, M.K. The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Technol. Environ. Policy 2017, 19, 37–52. [Google Scholar] [CrossRef]
- Pinto, I.; Rodrigues, S.; Lage, O.M.; Antunes, S.C. Assessment of water quality in Aguieira reservoir: Ecotoxicological tools in addition to the Water Framework Directive. Ecotoxicol. Environ. Saf. 2021, 208, 111583. [Google Scholar] [CrossRef]
- Teixeira, P.; Dias, D.; Costa, S.; Brown, B.; Silva, S.; Valério, E. Bacteroides spp. and traditional fecal indicator bacteria in water quality assessment—An integrated approach for hydric resources management in urban centers. J. Environ. Manag. 2020, 271, 110989. [Google Scholar] [CrossRef]
- Şener, S.; Şener, E.; Varol, S. Hydro-chemical and microbiological pollution assessment of irrigation water in Kızılırmak Delta (Turkey). Environ. Pollut. 2020, 266, 115214. [Google Scholar] [CrossRef]
- Bakalli, M.; Bakalli, D.; Selamaj, J. Assessment of quality of water wells in rural areas in Tirana City, Albania. AIP Conf. Proc. 2019, 2190, 020014. [Google Scholar]
- Msilimba, G.; Wanda, M.M. Microbial and geochemical quality of shallow well water in high-density areas in Mzuzu City in Malawi. Phys. Chem. Earth Parts A/B/C 2013, 66, 173–180. [Google Scholar] [CrossRef]
- Ligda, P.; Claerebout, E.; Casaert, S.; Robertson, L.J.; Sotiraki, S. Investigations from Northern Greece on mussels cultivated in areas proximal to wastewaters discharges, as a potential source for human infection with Giardia and Cryptosporidium. Exp. Parasitol. 2020, 210, 107848. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alvarez, V.; Maestre-Valero, J.F.; González-Ortega, M.J.; Gallego-Elvira, B.; Martin-Gorriz, B. Characterization of the Agricultural Supply of Desalinated Seawater in Southeastern Spain. Water 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Kloppmann, W.; Bourhane, A.; Schomburgk, S. Groundwater Salinization in France. Procedia Earth Planet. Sci. 2013, 7, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, J.; Tenza-Abril, A.J.; Borg, M.; Galea, J.; Candela, L. Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta. Sci. Total Environ. 2019, 650, 734–740. [Google Scholar] [CrossRef] [Green Version]
- Sowers, J.L.; Weinthal, E.; Zawahri, N. Targeting environmental infrastructures, international law and civilians in the new Middle Eastern wars. Secur. Dialogue 2017, 48, 410–430. [Google Scholar] [CrossRef]
- Gaaloul, N. Water resources and management in Tunisia. Int. J. Water 2011, 6, 92–116. [Google Scholar] [CrossRef]
- Mnassri, S.; Dridi, L.; Lucas, Y.B.; Schäfer, G.; Hachicha, M.; Majdoub, R. Identifying the origin of groundwater salinisation in the Sidi El Hani basin in central-eastern, Tunisia. J. Afr. Earth Sci. 2018, 147, 443–449. [Google Scholar]
- Abd Ellah, R.G. Water resources in Egypt and their challenges, lake nasser case study. Egypt J. Aquat. Res. 2020, 46, 1–12. [Google Scholar] [CrossRef]
- Telahigue, F.; Mejri, H.; Mansouri, B.; Souid, F.; Agoubi, B.; Chahlaoui, A. Assessing seawater intrusion in arid and semi-arid Mediterranean coastal aquifers using geochemical approaches. Phys. Chem. Earth 2020, 115, 102811. [Google Scholar] [CrossRef]
- Abu-alnaeem, M.F.; Yusoff, I.; Ng, T.F.; Alias, Y.; Raksmey, M. Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Sci. Total Environ. 2018, 615, 972–989. [Google Scholar] [CrossRef]
- Paleologos, E.K.; Farouk, S.; Al Nahyan, M.T. Water resource management towards a sustainable water budget in the United Arab Emirates, IOP Conference Series: Earth and Environmental Science, 191. In Proceedings of the 4th International Conference on Water Resource and Environment (WRE 2018), Kaohsiung City, Taiwan, 17–21 July 2018. [Google Scholar]
- Li, C.; Gao, X.; Li, S.; Bundschuh, J. A review of the distribution, sources, genesis, and environmental concerns of salinity in groundwater. Environ. Sci. Pollut. Res. 2020, 27, 41157–41174. [Google Scholar] [CrossRef]
- Shomar, B.; Darwish, M.; Rowell, C. What does Integrated Water Resources Management from Local to Global Perspective Mean? Qatar as a Case Study, the Very Rich Country with No Water. Water Resour. Manag. 2014, 28, 2781–2791. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef] [PubMed]
- Slater, Y.; Finkelshtain, I.; Reznik, A.; Kan, I. Large scale desalination and the external impact on irrigation water salinity: Economic analysis for the case of Israel. Water Resour. Res. 2020, 56, 25657. [Google Scholar] [CrossRef]
- EurEau. The European Federation of National Water Services. Europe’s Water in Figures. An Overview of the European Drinking Water and Wastewater Sectors 2017 Edition. Available online: https://www.danva.dk/media/3645/eureau_water_in_figures.pdf (accessed on 12 December 2020).
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Change 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Shtein, A.; Panov, N.; Weisbrod, N.; Tal, A. Was drought really the trigger behind the Syrian Civil War in 2011? Water 2019, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, H.; Ahmad, F.; Holtmeier, L.; King-Okumu, C. Refugees, water balance, and water stress: Lessons learned from Lebanon. Ambio 2020, 49, 1179–1193. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.B. The geopolitics of Israel’s border question. In The Geopolitics of Israel’s Border Question; Routledge: Abingdon, UK, 2020; pp. 1–124. [Google Scholar]
- United Nations Environment Programme (UNEP). Annual Report; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2013; ISBN 978-92-807-3380-8. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/8607/-UNEP%202013%20Annual%20Report-2014UNEP%20AR%202013-LR.pdf?sequence=8&isAllowed=y (accessed on 12 December 2020).
- Gulseven, O. Measuring achievements towards SDG 14, life below water, in the United Arab Emirates. Mar. Policy 2020, 117, 103972. [Google Scholar] [CrossRef]
- Da Silva, I.; Ronoh, G.; Maranga, I.; Odhiambo, M.; Kiyegga, R. Implementing the SDG 2, 6 and 7 Nexus in Kenya—A Case Study of Solar Powered Water Pumping for Human Consumption and Irrigation. In International Business, Trade and Institutional Sustainability; Leal Filho, W., Borges de Brito, P., Frankenberger, F., Eds.; World Sustainability Series; Springer: Cham, Switzaerland, 2020. [Google Scholar]
- Jama, A.A.; Mourad, K.A. Water services sustainability: Institutional arrangements and shared responsibilities. Sustainability 2019, 11, 916. [Google Scholar] [CrossRef] [Green Version]
- Celik, I.; Tamimi, L.M.A.; Al-Khatib, I.A.; Apul, D.S. Management of rainwater harvesting and its impact on the health of people in the Middle East: Case study from Yatta town, Palestine. Environ. Monit. Assess. 2017, 189, 271. [Google Scholar] [CrossRef] [PubMed]
- Ganoulis, J.; Fried, J. Transboundary Hydro-Governance—From Conflict to Shared Management; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Eklund, L.; Thompson, D. Differences in resource management affects drought vulnerability across the borders between Iraq, Syria, and Turkey. Ecol. Soc. 2017, 22, 9. [Google Scholar] [CrossRef]
- Gari, Y.; Block, P.; Assefa, G.; Mekonnen, M.; Tilahun, S.A. Quantifying the United Nations’ watercourse convention indicators to inform equitable transboundary river sharing: Application to the Nile River Basin. Water 2020, 12, 2499. [Google Scholar] [CrossRef]
- De Stefano, L.; Edwards, P.; Wolf, A. Tracking Cooperation and Conflict in International Basins: Historic and Recent Trends. Water Policy 2010, 12, 2499. [Google Scholar] [CrossRef] [Green Version]
- AbuZeid, K.M. Existing and Recommended Water Policies in Egypt. In Water Policies in MENA Countries; Zekri, S., Ed.; Springer: Cham, Switzerland, 2020; Volume 23. [Google Scholar]
- Ahmed, M.T. The Grand Ethiopian Renaissance Dam and the sustainability of water resources: Would monetary compensation warrant some more restrictions on dams? Sustain. Water Resour. Manag. 2019, 5, 1327–1334. [Google Scholar] [CrossRef]
- Mianabadi, H.; Mostert, E.; Pande, S. Weighted Bankruptcy Rules and Transboundary Water Resources Allocation. Water Resour. Manag. 2015, 29, 2303–2321. [Google Scholar] [CrossRef] [Green Version]
- Taubenblatt, S.A. Jordan river basin water: A challenge in the 1990s. In The Politics of Scarcity; Routledge: Abingdon, UK, 2019; pp. 41–52. [Google Scholar]
- Lopez, J.M.R.; Tielbörger, K.; Claus, C.; Gramberger, M.; Scheffran, J. A transdisciplinary approach to identifying transboundary tipping points in a contentious area: Experiences from across the Jordan River region. Sustainability 2019, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Zeitoun, M.; Dajani, M.; Abdallah, C.; Khresat, S.; Elaydi, H. The Yarmouk tributary to the Jordan river II: Infrastructure impeding the transformation of equitable transboundary water arrangements. Water Altern. 2019, 12, 1095–1122. [Google Scholar]
- Geressu, R.T.; Harou, J.J. Screening reservoir systems by considering the efficient trade-offs—informing infrastructure investment decisions on the Blue Nile. Environ. Res. Lett. 2015, 10, 125008. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, S.A. The River Nile and Ethiopia’s Grand Renaissance Dam: Challenges to Egypt’s security approach. Int. J. Environ. Sci. 2019, 76, 136–149. [Google Scholar] [CrossRef]
- Mohamed, N.N. Continuous Dispute Between Egypt and Ethiopia Concerning Nile Water and Mega Dams. Handb. Environ. Chem. 2019, 79, 451–483. [Google Scholar]
- Roussi, A. Gigantic Nile dam prompts clash between Egypt and Ethiopia. Nature 2019, 574, 159–160. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, E.; Ricci, G.F.; Gentile, F.; De Girolamo, A.M. Using water footprint concepts for water security assessment of a basin under anthropogenic pressures. Sci. Total Environ. 2020, 708, 141356. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.; Koç, C.; Gerasimov, I. A study on the evaluation of the water quality status for the Büyük Menderes River, Turkey. Sustain. Water Resour. Manag. 2020, 6, 100. [Google Scholar]
- Capodici, M.; Morici, C.; Viviani, G. Batch test evaluation of four organic substrates suitable for biological groundwater denitrification. Chem. Eng. Trans. 2014, 38, 43–48. [Google Scholar]
- Dhamole, P.B.; D’Souza, S.F.; Lele, S.S. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste. J. Inst. Electr. Eng. Ser. E 2015, 96, 63–73. [Google Scholar] [CrossRef]
- Paredes, I.; Otero, N.; Soler, A.; Green, A.J.; Soto, D.X. Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agric. Ecosyst. Environ. 2020, 294, 106859. [Google Scholar] [CrossRef]
- Sofo, A. Tecniche di Biorisanamento In Situ ed Ex Situ, Con Particolare Riferimento Alla Biodegradazione In Siti Contaminati da Idrocarburi; Sofo, A., Ed.; SCL: Rutherford, NJ, USA, 2010. [Google Scholar]
- Li, Z.; Dai, R.; Yang, B.; Chen, M.; Wang, X.; Wang, Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. J. Hazard. Mater. 2021, 404, 124198. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Jassby, D.; Nerenberg, R.; Zhiyong, J.R. Hydrophobic Gas Transfer Membranes for Wastewater Treatment and Resource Recovery. Environ. Sci. Technol. 2019, 53, 11618–11635. [Google Scholar] [CrossRef]
- Allende, A.; Monaghan, J. Irrigation water quality for leafy crops: A perspective of risks and potential solutions. Int. J. Environ. Res. Public Health 2015, 12, 7457–7477. [Google Scholar] [CrossRef] [Green Version]
- Jongman, M.; Korsten, L. Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. Food Rev. Int. 2018, 34, 308–328. [Google Scholar] [CrossRef] [Green Version]
- Olaimat, N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pachepsky, Y.; Shelton, D.R.; McLain, J.E.T.; Patel, J.; Mandrell, R.E. Irrigation waters as a source of pathogenic microorganisms in produce. A Review. Adv. Agron. 2011, 113, 73–138. [Google Scholar]
- Banach, J.L.; Hoffmans, Y.; Appelman, W.A.J.; Van Bokhorst-Van De Veen, H.; Van Asselt, E. Application of water disinfection technologies for agricultural waters. Agric. Water Manag. 2021, 244, 106527. [Google Scholar] [CrossRef]
- Alnaimat, F.; Ziauddin, M.; Mathew, B. A review of recent advances in humidification and dehumidification desalination technologies using solar energy. Desalination 2021, 499, 114860. [Google Scholar] [CrossRef]
- Prajapati, M.; Shah, M.; Soni, B.; Parikh, S.; Sircar, A.; Balchandani, S.; Thakore, S.; Tala, M. Geothermal-solar integrated groundwater desalination system: Current status and future perspective. Groundw. Sustain. Dev. 2021, 12, 100506. [Google Scholar] [CrossRef]
- Farsi, A.; Dincer, I. Development and evaluation of an integrated MED/membrane desalination system. Desalination 2019, 463, 55–68. [Google Scholar] [CrossRef]
- Raluy, R.G.; Serra, L.; Uche, J. Life cycle assessment of desalination technologies integrated with renewable energies. Desalination 2005, 183, 81–93. [Google Scholar] [CrossRef]
- Hamed, A. Overview of hybrid desalination systems—Current status and future prospects. Desalination 2005, 186, 207–214. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Taha, E.S.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Shah, M.; Sircar, A.; Haikh, N.; Patel, K.; Thakar, V.; Sharma, D.; Sarkar, P.; Vaidya, D. Groundwater analysis of cholera geothermal field, Gujarat, India for suitable Applications. Groundw. Sustain. Dev. 2018, 7, 143–156. [Google Scholar] [CrossRef]
- Yewhalaw, D.; Hamels, S.; Getachew, Y.; Torgerson, P.R.; Anagnostou, M.; Legesse, W.; Speybroeck, N. Water resource developments in Ethiopia: Potential benefits and negative impacts on the environment, vector-borne diseases, and food security. Environ. Rev. 2014, 22, 364–371. [Google Scholar] [CrossRef]
- Kibret, S.; MacCarteney, M.; Lautze, J. Malaria transmission in the vicinity of impounded water: Evidence from the Koka reservoir, Ethiopia, Colombo, Sri Lanka: International Water Management Institute (IWMI). Res. Rep. 2009, 132, 10–52. [Google Scholar]
- Meskal, F.H.; Kloos, H. Vector-borne disease occurrence and spread as affected by labor migrations to irrigation schemes in Ethiopia. In Demography and Vector-Borne Disease; CRC Press: Boca Raton, FL, USA, 1989; pp. 225–236. [Google Scholar]
- Waterbury, J. Water and water supply in the MENA: Less of the same. In Water, Energy and Food Sustainability in the Middle East; Springer: Cham, Switzerland, 2017; pp. 57–84. [Google Scholar]
- Commission Directive 2014/101/EU of 30 October 2014 amending Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy Text with EEA relevance. Off. J. Eur. Union 2014, 57, 1–20.
- Scoullos, M. Transboundary IWRM Attempts in the Mediterranean Emphasis on the Drin River Case and the Involvement of Stakeholders. In Integrated Water Resources Management in the Mediterranean Region; Choukr-Allah, R., Ragab, R., Rodriguez-Clemente, R., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Akinsete, E.; Apostolaki, S.; Chatzistamoulou, N.; Koundouri, P.; Tsani, S. The Link between Ecosystem Services and Human Wellbeing in the Implementation of the European Water Framework Directive: Assessing Four River Basins in Europe. Water 2019, 11, 508. [Google Scholar] [CrossRef] [Green Version]
- Tsani, S.; Koundouri, P.; Akinsete, E. Resource management and sustainable development: A review of the European water policies in accordance with the United Nations’ Sustainable Development Goals. Environ. Sci. Policy 2020, 114, 570–579. [Google Scholar] [CrossRef]
Target | Objects |
---|---|
6.1 | By 2030, achieve universal and equitable access to safe and affordable drinking water for all |
6.1.1 | Proportion of population using safely managed drinking water services (%). |
6.2 | By 2030, achieve access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations |
6.2.1a | Proportion of population practicing open defecation, by urban/rural (%) |
6.2.1b | Proportion of population using (a) safely managed sanitation services and (b) a hand-washing facility with soap and water (%) |
6.3 | By 2030, improve water quality by reducing pollution, eliminating dumping, and minimizing the release of hazardous chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally |
6.3.1 | Proportion of safely treated domestic wastewater flows (%) |
6.4 | By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity |
6.4.1 | Water Use Efficiency (USD per cubic meter) |
6.4.2 | Level of water stress: freshwater withdrawal as a proportion of available freshwater resources (%) |
6.5 | By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate |
6.5.1 | Degree of integrated water resources management implementation (%) |
6.5.2 | Proportion of transboundary basins (river, lake basins, aquifers) with an operational arrangement for water cooperation (%) |
6.6 | By 2020, protect and restore water-related ecosystems (mountains, forests, wetlands, rivers, aquifers, lakes) |
6.6.1a | Water body extent (permanent) (square kilometers) |
6.6.1b | Water body extent (permanent) (% of Mediterranean land) |
6.1 | 6.2 | 6.3 | 6.4 | 6.5 | 6.6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Drinking Water | Hygiene | Water Quality | Efficiency | Water Stress | IWRM | Ecosystems | ||||
6.1.1 | 6.2.1a | 6.2.1b | 6.3.1 | 6.4.1 | 6.4.2 | 6.5.1 | 6.5.2 | 6.6.1a | 6.6.1b | |
EUROPE | ||||||||||
Albania | 70% | n.a. | 39.9% | 67% | $6.27 | 7% | 43% | 76% | 523 | 1.8% |
Bosnia and Herzegovina | 89% | n.a. | 22% | 23% | n.a. | n.a. | 61% | 93% | 203 | 0.4% i |
Croatia | 90% | n.a. | 58% | 59% | $58.71 | 2% | 90% | n.a. | 641 | 1.1% i |
Cyprus | 100% | n.a. | 75% | 37% | $59.17 | 30% | 91% | n.a. | 12 | 0.1% i |
France | 98% | n.a. | 88% | n.a. | $83.53 f | 23% | 100% g | 53% h | 3744 | 0.6% i |
Greece | 100% b | n.a. | 90% c | n.a. | $15.15 | 23% | 83% g | 58% | 2928 | 2.2% i |
Italy | 95% | n.a. | 96% | n.a. | $48.85 | 30% | 55% | 100% | 3652 | 1.2% i |
Malta | 100% | n.a. | 93% | 100% | $161.23 | 85% | 75% | n.a. | 2 | 0.6% i |
Montenegro | 94% | 0.05% | n.a. | n.a. | $10.85 f | n.a. | 34% | 79% | 262 | 1.9% |
Slovenia | 98% | n.a. | 83% | 63% | $42.63 | 6% | 58% | 100% | 44 | 0.2% i |
Spain | 98% b | n.a. | 97% c | 90% d | $36.21 | 43% | 82% g | 100% | 3156 | 0.6% i |
MENA | ||||||||||
Middle East | ||||||||||
Israel | 10% | n.a. | 94% | 91% | $125.67 | 103% | 85% | n.a. | 458 | 2.1% |
Jordan | 94% | 0.19% | 81% | 83% | $34.98 | 100% | 63% | 21% h | 445 | 0.5% i |
Lebanon | 48% | n.a. | 22% | 13% | $25.64 | 58% | 32% | n.a. | 17 | 0.2% i |
Palestine | n.a. | 0.16% | 61% | 69% | $31.18 | 41% | n.a. | n.a. | n.a. | n.a. |
Syrian A.R. | n.a. | 0.67% | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 981 | 0.5% i |
Turkey | 0% | 0.31% | 65% | 35% | $13.58 | 45% | 70% | n.a. | 11,962 | 1.5% i |
North Africa | ||||||||||
Algeria | n.a. | 0.8% | 17.6% c | 18% | $14.36 f | 138% | n.a. | n.a. | 386 | 0.02% i |
Egypt | n.a. | n.a. | 61% | 58% d | $4.37 | 118% | n.a. | n.a. | 6519 | 0.65% i |
Libya | n.a. | n.a. | 26% c | 15% d | $3.79 | 817% | 47% | n.a. | 60 | 0.003% i |
Morocco | 70% | 7.2% a | 39% | 43% | $8.42 f | 50% | 64% | n.a. | 589 | 0.13% i |
Tunisia | 93% | n.a. | 78% | 71% | $7.73 f | 121% | n.a. | 80% | 297 | 0.18% i |
Rivers | Countries | Focus | Ref. |
---|---|---|---|
Euphrates | Turkey, Syria | Water resources of the Euphrates River basin have been severely depleted by the numerous dams built in Turkey, which have reduced, by 1/3, the water flow to the two downstream Countries, (Syria, Iraq) which risk serious drought. Turkey can exploit its dominance in terms of economic strength, political influence, and military capability, while in the two Countries downstream, these aspects are limited due to their internal political fragmentation and weaker military status | [86,87,88,89,92] |
Jordan | Israel, Jordan, Syria | The Jordan River is disputed between Israel, Jordan, Syria, and Lebanon, but Israel is the main “consumer” of its waters. After all, Israel’s main water resources are found in the territories occupied during the wars of 1948 and 1967 (Golan Heights, the West Bank, and the Gaza Strip). | [93,94,95] |
Nile | Egypt | The Nile originates in Equatorial Africa and crosses 7 states before arriving in Egypt. The amount of water that this latter nation can use therefore depends on the upstream Countries. Though the conflict between Egypt and Sudan ended with a treaty in 1959, with Ethiopia the situation is still problematic. | [96,97,98,99] |
Mediterranean Countries (MC) | QUALITY | QUANTITY | SDGs Linkage | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Pollution | Biological Pollution | Saline Aquifer | Water Losses | Agricultural Withdrawn | Transboundary Disputes | Internal Conflicts | Lack of Infrastructures | WRM | ||||||
Nitrates | Heavy Metals | Pesticides | Other | E. coli | Other | |||||||||
Albania | × | × | × | 6.3, 6.4 | ||||||||||
Algeria | × | × | × | × | × | × | 6.1, 6.2, 6.3, 6.5, 6.a | |||||||
B. Herzegovina | × | × | × | 6.5, 6.6, 6.a, 6.b | ||||||||||
Croatia | × | 6.2, 6.3, 6.6 | ||||||||||||
Cyprus | × | × | 6.3, 6.5 | |||||||||||
Egypt | × | × | × | × | × | 6.1, 6.3, 6.5, 6.6, 6.b | ||||||||
France | × | × | × | × | 6.3, 6.4, 6.5 | |||||||||
Greece | × | × | × | 6.3, 6.4, 6.6 | ||||||||||
Italy | × | × | × | × | × | 6.3, 6.4, 6.5 | ||||||||
Jordan | × | × | 6.1, 6.2, 6.b | |||||||||||
Lebanon | × | × | × | × | × | × | × | 6.3, 6.4, 6.a | ||||||
Libya | × | × | × | × | × | 6.1, 6.2, 6.3, 6.5 | ||||||||
Malta | × | × | × | × | 6.1, 6.3, 6.4, 6.5 | |||||||||
Morocco | × | × | × | 6.1, 6.3 | ||||||||||
Palestine | × | × | × | × | 6.1, 6.2, 6.3, 6.a | |||||||||
Portugal | × | × | × | × | × | × | 6.3, 6.4, 6.6 | |||||||
Slovenia | × | × | 6.1, 6.2, 6.3, 6.4, 6.b | |||||||||||
Spain | × | × | × | × | × | 6.3, 6.4, 6.5, 6.a | ||||||||
Syria | × | × | × | × | 6.5, 6.6, 6.a, 6.b | |||||||||
Tunisia | × | × | × | 6.1, 6.2, 6.3, 6.b | ||||||||||
Turkey | × | × | × | 6.3, 6.4, 6.6, 6.a | ||||||||||
Total MC | 13 | 8 | 6 | 10 | 2 | 3 | 11 | 6 | 6 | 7 | 2 | 2 | 4 |
Challenges | SDG 6: Indicator Involved | SDGs Involved | Opportunities |
---|---|---|---|
Chemical (nitrates, plastics, heavy metals, pesticides) and biological (Escherichia coli and other microorganisms) pollution | 6.1, 6.2, 6.3, 6.6 | 1, 2, 3, 8, 10, 11, 12, 13, 14, 15, 17 |
|
| |||
| |||
Brackish and/or saline waters | 6.1, 6.3, 6.a | 1, 2, 3, 7, 8, 10, 12, 14, 15, 17 |
|
Non-properly or absent water infrastructure | 6.4, 6.5, 6.a | 1, 2, 3, 8, 9, 10, 12, 13, 14, 15, 16, 17 |
|
| |||
| |||
| |||
Transboundary waters issues | 6.4, 6.5, 6.b | 1, 2, 3, 8, 10, 11, 13, 14, 15, 16, 17 |
|
| |||
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinci, G.; Maddaloni, L.; Mancini, L.; Prencipe, S.A.; Ruggeri, M.; Tiradritti, M. The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview. Earth 2021, 2, 894-919. https://doi.org/10.3390/earth2040052
Vinci G, Maddaloni L, Mancini L, Prencipe SA, Ruggeri M, Tiradritti M. The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview. Earth. 2021; 2(4):894-919. https://doi.org/10.3390/earth2040052
Chicago/Turabian StyleVinci, Giuliana, Lucia Maddaloni, Leo Mancini, Sabrina Antonia Prencipe, Marco Ruggeri, and Margherita Tiradritti. 2021. "The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview" Earth 2, no. 4: 894-919. https://doi.org/10.3390/earth2040052
APA StyleVinci, G., Maddaloni, L., Mancini, L., Prencipe, S. A., Ruggeri, M., & Tiradritti, M. (2021). The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area. An Overview. Earth, 2(4), 894-919. https://doi.org/10.3390/earth2040052