Fields of Application of SWAT Hydrological Model—A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Runoff Simulation
3.2. Non-Point Source Pollution
3.3. Hydrological Impacts under Changing Environment
4. Discussion
4.1. Weaknesses
4.2. Strengths
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Volk, M.; Liersch, S.; Schmidt, G. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 2009, 26, 580–588. [Google Scholar] [CrossRef]
- Hejzlar, J.; Anthony, S.; Arheimer, B.; Behrendt, H.; Bouraoui, F.; Grizzetti, B.; Groenendijk, P.; Jeuken, M.H.J.L.; Johnsson, H.; Porto, A.L.; et al. Nitrogen and phosphorus retention in surface waters: An inter-comparison of predictions by catchment models of different complexity. J. Environ. Monit. 2009, 11, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill, Inc.: New York, NY, USA, 1988; p. 572. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment. Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Glavan, M.; Pintar, M. Strengths, Weaknesses, Opportunities and Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) Model. In Water Resources Management and Modeling; InTechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauged: Hydrological budget and crop yield predictions in the upper Mississippi River basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Knisel, W.G. CREAMS: A Field-Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems; United States Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1982. [Google Scholar]
- Leonard, R.A.; Knisel, W.G.; Still, D.A. Gleams: Groundwater Loading Effects of Agricultural Management Systems. Trans. Am. Soc. Agric. Eng. 1987, 30, 1403–1418. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Williams, J.R.; McGill, W.B.; Rosenberg, N.J.; Jakas, M.C.Q. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecol. Model. 2006, 192, 362–384. [Google Scholar] [CrossRef]
- Williams, J.R. The erosion-productivity impact calculator (EPIC) model: A case history. Philos. Trans. R. Soc. B: Biol. Sci. 1990, 329, 421–428. [Google Scholar]
- Arnold, J.G.; Williams, J.R. Validation of Swrrb—A Simulator for Water Resources in Rural Basins. J. Water Resour. Plan. Manag. 1985, 113, 107–114. [Google Scholar] [CrossRef]
- Arnold, B.J.G.; Williams, J.R.; Maidment, D.R. Continuous-Time Water and Sediment-Routing Model for Large Basins. J. Hydraul. Eng. 1995, 121, 171–183. [Google Scholar] [CrossRef]
- Brown, L.C.; Barnwell, T.O. The Enhanced Stream Water Quality Models Qual2E and Qual2E-UNCAS Documentation and User Manual; US Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory: Athens, GA, USA, 1987; p. 189. [Google Scholar]
- PW Gassman, M.R.; Reyes, C.H.; Green, J.G. Arnold. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (Swat) Model: Current Developments and Applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, R.; Xie, J.; Zhao, Y.; Yan, D.; Yang, S. Soil and Water Assessment Tool (SWAT) Model: A Systemic Review. J. Coast. Res. 2019, 93, 22–30. [Google Scholar] [CrossRef]
- Diwakar, S.K.; Kaur, D.S.; Patel, D.N. Hydrologic Assessment in a Middle Narmada Basin, India using SWAT Model. Int. J. Eng. Technol. Comput. Res. 2014, 2, 10–25. [Google Scholar]
- Li, B.Q.; Xiao, W.H.; Wang, Y.C.; Yang, M.Z.; Huang, Y. Impact of land use/cover change on the relationship between precipitation and runoff in typical area. J. Water Clim. Chang. 2018, 9, 261–274. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, J.; Yang, H. Multi-time scale evaluation of forest water conservation function in the semiarid mountains area. Forests 2021, 12, 116. [Google Scholar] [CrossRef]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Van Griensven, A.; Bauwens, W. Multiobjective autocalibration for semidistributed water quality models. Water Resour. Res. 2003, 39, 1–9. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Kiesel, J.; Schmalz, B.; Brown, G.L.; Fohrer, N. Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. J. Hydrol. Hydromech. 2013, 61, 334–346. [Google Scholar] [CrossRef]
- Chathuranika, I.M.; Gunathilake, M.B.; Baddewela, P.K.; Sachinthanie, E.; Babel, M.S.; Shrestha, S.; Jha, M.K.; Rathnayake, U.S. Comparison of Two Hydrological Models, HEC-HMS and SWAT in Runoff Estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids 2022, 7, 267. [Google Scholar] [CrossRef]
- Pistocchi, A.; Mazzoli, P. Use of HEC-RAS and HEC-HMS models with ArcView for hydrologic risk management. In Proceedings of the International Congress on Environmental Modelling and Software, Lugano, Switzerland, 1 June 2002. [Google Scholar]
- AL-Hussein, A.A.M.; Khan, S.; Ncibi, K.; Hamdi, N.; Hamed, Y. Flood Analysis Using HEC-RAS and HEC-HMS: A Case Study of Khazir River (Middle East—Northern Iraq). Water 2022, 14, 3779. [Google Scholar] [CrossRef]
- Lin, S.; Jing, C.; Chaplot, V.; Yu, X.; Zhang, Z.; Moore, N.; Wu, J. Effect of DEM resolution on SWAT outputs of runoff, sediment and nutrients. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 4411–4435. Available online: http://www.hydrol-earth-syst-sci-discuss.net/7/4411/2010/ (accessed on 20 February 2017).
- Nagaveni, C.; Kumar, K.P.; Ravibabu, M.V. Evaluation of TanDEMx and SRTM DEM on watershed simulated runoff estimation. J. Earth Syst. Sci. 2019, 128, 2. [Google Scholar] [CrossRef]
- Yaduvanshi, A.; Sharma, R.K.; Kar, S.C.; Sinha, A.K. Rainfall–runoff simulations of extreme monsoon rainfall events in a tropical river basin of India. Nat. Hazards 2018, 90, 843–861. [Google Scholar] [CrossRef]
- Zhou, G.; Cui, M.; Wan, J.; Zhang, S. A review on snowmelt models: Progress and prospect. Sustainability 2021, 13, 11485. [Google Scholar] [CrossRef]
- Senent-Aparicio, J.; Jimeno-Sáez, P.; Bueno-Crespo, A.; Pérez-Sánchez, J.; Pulido-Velázquez, D. Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction. Biosyst. Eng. 2019, 177, 67–77. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Xia, J.; Hao, G. Optimal control of nonpoint source pollution in the Bahe River Basin, Northwest China, based on the SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 55330–55343. [Google Scholar] [CrossRef]
- Zheng, M.; Sheng, Y.; Sun, R.; Tian, C.; Zhang, H.; Ning, J.; Sun, Q.; Li, Z.; Bottrell, S.H.; Mortimer, R.J. Identification and Quantification of Nitrogen in a Reservoir, Jiaodong Peninsula, China. Water Environ. Res. 2017, 89, 369–377. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.I.; Saito, M. Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period. Environ. Res. Lett. 2022, 17, 014010. [Google Scholar] [CrossRef]
- Jayakody, P.; Parajuli, P.B.; Cathcart, T.P. Impacts of climate variability on water quality with best management practices in sub-tropical climate of USA. Hydrol. Process. 2014, 28, 5776–5790. [Google Scholar] [CrossRef]
- King, E.A.; Paget, M.J.; Briggs, P.R.; Raupach, M.R.; Trudinger, C.M. Operational Delivery of Hydro-Meteorological Monitoring and Modeling Over the Australian Continent. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2009, 2, 241–249. [Google Scholar] [CrossRef]
- Naz, R.; Ashraf, A.; Van der Tol, C.; Aziz, F. Modeling hydrological response to land use/cover change: Case study of Chirah Watershed (Soan River), Pakistan. Arab. J. Geosci. 2020, 13, 1220. [Google Scholar] [CrossRef]
- Said, M.; Hyandye, C.; Mjemah, I.C.; Komakech, H.C.; Munishi, L.K. Evaluation and Prediction of the Impacts of Land Cover Changes on Hydrological Processes in Data Constrained Southern Slopes of Kilimanjaro, Tanzania. Earth 2021, 2, 225–247. [Google Scholar] [CrossRef]
- Munoth, P.; Goyal, R. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. Int. J. River Basin Manag. 2020, 18, 177–189. [Google Scholar] [CrossRef]
- Chotpantarat, S.; Boonkaewwan, S. Impacts of land-use changes on watershed discharge and water quality in a large inten-sive agricultural area in Thailand. Hydrol. Sci. J. 2018, 63, 1386–1407. [Google Scholar] [CrossRef]
- Astuti, I.S.; Sahoo, K.; Milewski, A.; Mishra, D.R. Impact of Land Use Land Cover (LULC) Change on Surface Runoff in an Increasingly Urbanized Tropical Watershed. Water Resour. Manag. 2019, 33, 4087–4103. [Google Scholar] [CrossRef]
- Ma, K.; Huang, X.; Liang, C.; Zhao, H.; Zhou, X.; Wei, X. Effect of land use/cover changes on runoff in the Min River water-shed. River Res. Appl. 2020, 36, 749–759. [Google Scholar] [CrossRef]
- Kibii, J.K.; Kipkorir, E.C.; Kosgei, J.R. Application of soil and water assessment tool (SWAT) to evaluate the impact of land use and climate variability on the Kaptagat catchment river discharge. Sustainability 2021, 13, 1802. [Google Scholar] [CrossRef]
- Getu Engida, T.; Nigussie, T.A.; Aneseyee, A.B.; Barnabas, J. Land Use/Land Cover Change Impact on Hydrological Process in the Upper Baro Basin, Ethiopia. Appl. Environ. Soil Sci. 2021, 2021, 6617541. [Google Scholar] [CrossRef]
- Awotwi, A.; Anornu, G.K.; Quaye-Ballard, J.A.; Annor, T.; Forkuo, E.K.; Harris, E.; Agyekum, J.; Terlabie, J.L. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena 2019, 182, 104129. [Google Scholar] [CrossRef]
- Samimi, M.; Mirchi, A.; Townsend, N.; Gutzler, D.; Daggubati, S.; Ahn, S.; Sheng, Z.; Moriasi, D.; Granados-Olivas, A.; Alian, S.; et al. Climate Change Impacts on Agricultural Water Availability in the Middle Rio Grande Basin. JAWRA J. Am. Water Re-sour. Assoc. 2022, 58, 164–184. [Google Scholar] [CrossRef]
- Dos Santos, V.; Laurent, F.; Abe, C.; Messner, F. Hydrologic response to land use change in a large basin in eastern Amazon. Water 2018, 10, 429. [Google Scholar] [CrossRef]
- Saidi, A.; Indra, R.; Somura, H.; Wakatsuki, T.; Masunaga, T. Soil erosion characterization in an agricultural watershed in West Sumatra, Indonesia. Tropics 2010, 19, 29–42. [Google Scholar]
- Li, M.; Shi, X.; Shen, Z.; Yang, E.; Bao, H.; Ni, Y. Effect of hillslope aspect on landform characteristics and erosion rates. Environ Monit Assess. Environ. Monit. Assess. 2019, 191, 598. [Google Scholar] [CrossRef]
- Sadiqi, S.S.J.; Hong, E.M.; Nam, W.H. Identification of priority management practices for soil erosion control through estimation of runoff and sediment yield using soil and water assessment tool on Salma watershed in Afghanistan. Irrig. Drain. 2022, 71, 804–822. [Google Scholar] [CrossRef]
- Bieger, K.; Arnold, J.G.; Rathjens, H.; White, M.J.; Bosch, D.D.; Allen, P.M.; Volk, M.; Srinivasan, R. Introduction to SWAT+, A Completely Restructured Version of the Soil and Water Assessment Tool. J. Am. Water Resour. Assoc. 2017, 53, 115–130. [Google Scholar] [CrossRef]
- Yen, H.; Park, S.; Arnold, J.G.; Srinivasan, R.; Chawanda, C.J.; Wang, R.; Feng, Q.; Wu, J.; Miao, C.; Bieger, K.; et al. IPEAT+: A built-in optimization and automatic calibration tool of SWAT+. Water 2019, 11, 1681. [Google Scholar] [CrossRef]
- Nkwasa, A.; Chawanda, C.J.; Msigwa, A.; Komakech, H.C.; Verbeiren, B.; van Griensven, A. How can we represent seasonal land use dynamics in SWAT and SWAT+ models for African cultivated catchments. Water 2020, 12, 1541. [Google Scholar] [CrossRef]
Data Type | Description | |
---|---|---|
Set-up | Digital Elevation Model (Topography) | 10, 25, 50, 100 m resolution (most often) |
Soil characteristics | Raster data as an input for all the spatial data of soil types, Database describing soil profiles and horizons | |
Land cover | Spatially distributed land cover classes for 1990, 2000, 2006, 2012, and 2018 * | |
Run | Climate data | Station data for air temperature, precipitation, relative humidity, wind speed, solar radiation |
Calibration | Biomass | Information about Leaf Area Index for each land cover |
Discharge data | Mostly less than 20 years of recorded discharge data | |
Suspended sediment | Suspended sediment discharge | |
Evapotranspiration | The Soil Evaporation Compensation factor, The Plant Evaporation Compensation factor, The Soil Albedo, The Plant Canopy, etc. | |
Nutrients concentrations | Monitoring of concentrations of nitrogen or phosphate compounds in surface waters at the station |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janjić, J.; Tadić, L. Fields of Application of SWAT Hydrological Model—A Review. Earth 2023, 4, 331-344. https://doi.org/10.3390/earth4020018
Janjić J, Tadić L. Fields of Application of SWAT Hydrological Model—A Review. Earth. 2023; 4(2):331-344. https://doi.org/10.3390/earth4020018
Chicago/Turabian StyleJanjić, Josip, and Lidija Tadić. 2023. "Fields of Application of SWAT Hydrological Model—A Review" Earth 4, no. 2: 331-344. https://doi.org/10.3390/earth4020018
APA StyleJanjić, J., & Tadić, L. (2023). Fields of Application of SWAT Hydrological Model—A Review. Earth, 4(2), 331-344. https://doi.org/10.3390/earth4020018