Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Determination of Characteristics
3.2. Water Sampling
3.3. Water Preparation and Analysis
3.4. Sediment Sampling and Analysis
4. Results
4.1. Radiative and Climatic Characteristics
4.2. Chemical Oxygen Demand of El Conejo Lagoon
4.3. Biological Oxygen Demand of El Conejo Lagoon
4.4. Water Quality
4.5. Sediment Characteristics
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
July–August 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 39,759 | 9940 | 2.10 | 0.089 | >0.05 Ho is accepted |
Error | 70 | 330,706 | 4724 | |||
Total | 74 | 370,465 | ||||
September–October 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 8045 | 2011 | 1.92 | 0.116 | >0.05 Ho is accepted |
Error | 70 | 73,265 | 1047 | |||
Total | 74 | 81,310 | ||||
November–December 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 2185 | 546.2 | 0.42 | 0.795 | >0.05 Ho is accepted |
Error | 70 | 91,318 | 1304.5 | |||
Total | 74 | 93,503 |
July–August 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 13,474.8 | 3368.70 | 81.06 | 0.000 | <0.05 Ho is rejected |
Error | 20 | 831.2 | 41.56 | |||
Total | 24 | 14,306.0 | ||||
September–October 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 2788.2 | 697.02 | 22.02 | 0.000 | <0.05 Ho is rejected |
Error | 20 | 633.2 | 31.66 | |||
Total | 24 | 3421.4 | ||||
November–December 2019 | ||||||
Source | DF | SS Ajust. | MS Ajust. | Value F | Value p | |
Factor | 4 | 6855.8 | 1713.96 | 131.64 | 0.000 | <0.05 Ho is rejected |
Error | 20 | 260.4 | 13.02 | |||
Total | 24 | 7116.2 |
July–August 2019 | |||
Difference in Levels | Difference in Means | Confidence Interval | Adjusted p Value |
M2-M1 | −56.80 | (−69.00, −44.60) | 0.000 |
M3-M1 | −30.60 | (−42.80, −18.40) | 0.000 |
M4-M1 | −64.60 | (−76.80, −52.40) | 0.000 |
M5-M1 | −51.00 | (−63.20, −38.80) | 0.000 |
M3-M2 | 26.20 | (14.00, 38.40) | 0.000 |
M4-M2 | −7.80 | (−20.00, 4.40) | 0.343 |
M5-M2 | 5.80 | (−6.40, 18.00) | 0.621 |
M4-M3 | −34.00 | (−46.20, −21.80) | 0.000 |
M5-M3 | −20.40 | (−32.60, −8.20) | 0.001 |
M5-M4 | 13.60 | (1.40, 25.80) | 0.024 |
September–October 2019 | |||
Difference in Levels | Difference in Means | Confidence Interval | Adjusted p Value |
M7-M6 | −10.60 | (−21.40, −0.04) | 0.051 |
M8-M6 | −3.00 | (−13.64, 7.64) | 0.914 |
M9-M6 | −24.60 | (−35.24, −13.96) | 0.000 |
M10-M6 | −25.20 | (−35.84, −14.56) | 0.000 |
M8-M7 | 7.60 | (−3.04, 18.24) | 0.244 |
M9-M7 | −14.00 | (−24.64, −3.36) | 0.007 |
M10-M7 | −14.60 | (−25.24, −3.96) | 0.004 |
M9-M8 | −21.60 | (−32.24, −10.96) | 0.000 |
M10-M8 | −22.20 | (−32.84, −11.56) | 0.000 |
M10-M9 | −0.60 | (−11.24, 10.04) | 1.000 |
November–December 2019 | |||
Difference in Levels | Difference in Means | Confidence Interval | Adjusted p Value |
M12-M11 | −35.40 | (−42.23, −28.57) | 0.000 |
M13-M11 | −17.40 | (−24.23, −10.57) | 0.000 |
M14-M11 | −44.20 | (−51.03, −37.37) | 0.000 |
M15-M11 | −40.60 | (−47.43, −33.77) | 0.000 |
M13-M12 | 18.00 | (11.17, 24.87) | 0.000 |
M14-M12 | −8.80 | (−15.63, −1.97) | 0.008 |
M15-M12 | −5.20 | (−12.03, 1.63) | 0.193 |
M14-M13 | −26.80 | (−33.63, −19.97) | 0.000 |
M15-M13 | −23.20 | (−30.03, −16.37) | 0.000 |
M15-M14 | 3.60 | (−3.23, 10.43) | 0.528 |
References
- Lobo, E.A.; Freitas, N.W.; Salinas, V.H. Diatoms as bioindicators: Ecological aspects of the algae response to eutrophication Latin America. Mex. J. Biotechnol. 2019, 4, 1–24. [Google Scholar] [CrossRef]
- Ruiz, A.; Cristina, M.; Munguia, P.; Miguel, R.; Ríos, S.; Sebastián, Á.; Aguilar, R. Evaluación de la calidad y contaminación del agua del rio Tuxpan, Michoacán, México. Rev. Latinoam. Ambient. Ciencias 2018, 9, 711–722. [Google Scholar]
- González-Dávila, R.P.; Ventura-Houle, R.; De-la-Garza-Requena, F.R.; Heyer-Rodríguez, L. Caracterización fisicoquímica del agua de la laguna La Vega Escondida, Tampico, Tamaulipas-México. Tecnol. Ciencias Agua 2019, 10, 1–29. [Google Scholar] [CrossRef]
- Martínez Roldan, A.d.J.; Gómez Lozano, B.P.; Díaz Ramírez, M.A.; Ruíz García, M.Á. Diseño, construcción y puesta en marcha de un fotobbiorreactor flat panel para el cultivo de microalgas. Rev. Alta Tecnol. Soc. 2020, 12, 46–53. [Google Scholar]
- Ramírez-Revilla, S.A. Design and implementation of water treatment system using ultraviolet radiation (UV) produced with photovoltaic energy. Rev. Mex. Ing. Química 2021, 20, 867–873. [Google Scholar] [CrossRef]
- Bonometto, A.; Ponis, E.; Cacciatore, F.; Riccardi, E.; Pigozzi, S.; Parati, P.; Novello, M.; Ungaro, N.; Acquavita, A.; Manconi, P.; et al. A New Multi-Index Method for the Eutrophication Assessment in Transitional Waters: Large-Scale Implementation in Italian Lagoons. Environments 2022, 9, 41. [Google Scholar] [CrossRef]
- Alvizuri Tintaya, P.A.; Villena Martínez, E.M.; Micó Vicent, B.; Lora García, J.; Torregrosa López, J.I.; Lo-Iacono-Ferreira, V. On the road to sustainable water supply: Reducing public health risks and preserving surface water resources in the milluni micro-basin, Bolivia. Environments 2022, 9, 4. [Google Scholar] [CrossRef]
- Fernández-Alías, A.; Montaño-Barroso, T.; Conde-Caño, M.R.; Manchado-Pérez, S.; López-Galindo, C.; Quispe-Becerra, J.I.; Marcos, C.; Pérez-Ruzafa, A. Nutrient overload promotes the transition from top-down to bottom-up control and triggers dystrophic crises in a Mediterranean coastal lagoon. Sci. Total Environ. 2022, 846, 157388. [Google Scholar] [CrossRef]
- Khalil, S.; Mahnashi, M.H.; Hussain, M.; Zafar, N.; Waqar-Un-Nisa; Khan, F.S.; Afzal, U.; Shah, G.M.; Niazi, U.M.; Awais, M.; et al. Exploration and determination of algal role as Bioindicator to evaluate water quality–Probing fresh water algae. Saudi J. Biol. Sci. 2021, 28, 5728–5737. [Google Scholar] [CrossRef]
- Toranzo, R.; Ferraro, G.; Beligni, M.V.; Perez, G.L.; Castiglioni, D.; Pasquevich, D.; Bagnato, C. Natural and acquired mechanisms of tolerance to chromium in a Scenedesmus dimorphus strain. Algal Res. 2020, 52, 102100. [Google Scholar] [CrossRef]
- Gil-Izquierdo, A.; Pedreño, M.A.; Montoro-García, S.; Tárraga-Martínez, M.; Iglesias, P.; Ferreres, F.; Barceló, D.; Núñez-Delicado, E.; Gabaldón, J.A. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Sci. Total Environ. 2021, 758, 143613. [Google Scholar] [CrossRef]
- Pizzini, S.; Giubilato, E.; Morabito, E.; Barbaro, E.; Bonetto, A.; Calgaro, L.; Feltracco, M.; Semenzin, E.; Vecchiato, M.; Zangrando, R.; et al. Contaminants of emerging concern in water and sediment of the Venice Lagoon, Italy. Environ. Res. 2024, 249, 118401. [Google Scholar] [CrossRef]
- de la Lanza Espino, G.; Alcocer Durand, J.; Moreno Ruiz, J.L. Análisis químico-biológico para determinar el estatus trófico de la Laguna de Tres Palos, Guerrero, México Chemical-biological analysis to determine the trophic status of Tres Palos Lagoon, Guerrero, Mexico. Hidrobiologica 2008, 18, 21–30. [Google Scholar]
- Dimas Mojarro, J.J.; Ortega, R.; Guadalupe, O.; Ortíz, G. Water quality of tourist Lagoon of Pie de la Cuesta. Rev. Latinoam. Ambient. Ciencias 2018, 9, 304–318. [Google Scholar]
- Amado Álvarez, J.P.; Pérez Cutillas, P.; Ramírez, V.O.; Alarcón Cabañero, J.J. Análisis de la calidad del agua en las lagunas de Bustillos Y de los Mexicanos (Chihuahua, México). Water quality analysis in the Bustillos and Los Mexicanos Lagoons (Chihuahua, México). Papeles Geogr. 2016, 62, 107–118. [Google Scholar] [CrossRef]
- Landeros-Sanchez, C.; Lango-Reynoso, F.; del Castaneda-Chavez, M.R.; Galaviz-Villa, I.; Nikolskii-Gavrilov, I.; Palomarez-Garcia, M.; Reyes-Velazquez, C.; Minguez-Rodriguez, M.M. Assessment of Water Pollution in Different Aquatic Systems: Aquifers, Aquatic Farms on the Jamapa River, and Coastal Lagoons of Mexico. J. Agric. Sci. 2012, 4, 186–196. [Google Scholar] [CrossRef]
- Sánchez, A.J.; Salcedo, M.Á.; Macossay-Cortez, A.A.; Feria-Díaz, Y.; Vázquez, L.; Ovando, N.; Rosado, L. Calidad ambiental de la laguna urbana. La Pólvora en la cuenca del río Grijalva TT-Environmental quality of the La Polvora urban lagoon in the Grijalva river watershed. Tecnol. Ciencias Agua 2012, 3, 143–152. [Google Scholar]
- Sandoval-Herazo, E.J.; Espinosa-Reyes, G.; Vallejo-Pérez, M.R.; Flores-Ramírez, R.; Pérez-Vázquez, F.; García-Cruz, N.U.; Lizardi-Jiménez, M.A. Bioreactors for remediation of hydrocarbons in rivers and lagoons of San Luis Potosí. Rev. Mex. Ing. Química 2020, 19, 101–110. [Google Scholar] [CrossRef]
- Navarrete-Rodríguez, G.; Castañeda-Chávez, M.D.R.; Lango-Reynoso, F. Geoacumulation of heavy metals in sediment of the fluvial–lagoon–deltaic system of the Palizada River, Campeche, Mexico. Int. J. Environ. Res. Public Health 2020, 17, 969. [Google Scholar] [CrossRef]
- Flores, C.M.; Del Angel, E.; Frías, D.M.; Gómez, A.L. Evaluation of physicochemical parameters and heavy metals in water and surface sediment in the Ilusiones Lagoon, Tabasco, Mexico. Tecnol. Ciencias Agua 2018, 9, 39–57. [Google Scholar] [CrossRef]
- García, G.; Muñoz-Vera, A. Characterization and evolution of the sediments of a Mediterranean coastal lagoon located next to a former mining area. Mar. Pollut. Bull. 2015, 100, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Carmoma-Jiménez, J.; Salinas-Camarillo, V.H.; Caro-Borrero, A. The Macroalgae Ecological Quality Index (MEQI) in the Basin of Mexico: A proposal of aquatic bioindicators for peri-urban rivers. Rev. Mex. Biodivers. 2022, 93, e933899. [Google Scholar] [CrossRef]
- Dimas Mojarro, J.J.; Ortega, R.; Guadalupe, O.; Dimas García, D.L. Metales pesados en la laguna de Tres Palos con impacto en la fauna acuática y en la sociedad, (Acapulco, Guerrero). Rev. Latinoam. Ambient. Ciencias 2019, 10, 31–52. [Google Scholar]
- Programa Municipal de Ordenamiento Territorial y Desarrollo Urbano de Altamira, Tamaulipas; Gobierno Municipal de Altamira: Altamira, Tamaulipas, Mexico, 2016.
- Soriano Mar, J. Determinación del Nivel de Contaminación por Metales Pesados en Sedimentos de la Laguna El Conejo del Municipio de Altamira. Ph.D. Thesis, Instituto Tecnológico de Ciudad Madero, Ciudad Madero, Tamaulipas, México, 2021. [Google Scholar]
- García Navarro, J. Metales Pesados en Sedimentos en Tres Lagunas Costeras del sur de Tamaulipas y Norte de Veracruz. Master’s Thesis, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Altamira, Instituto Politécnico Nacional, Mexico City, Mexico, 2006. [Google Scholar]
- Torres Moreno, R. Estudio de Microalgas del Sistema Lagunario del sur de Tamaulipas; Instituto Tecnológico de Ciudad Madero: Ciudad Madero, México, 2020; Available online: https://cymbella.fciencias.unam.mx/img/numeros/V7/03/Estudio_de_microalgas_del_sistema_lagunario_de_sur_de_Tamaulipas.pdf (accessed on 24 July 2024).
- Humbert, J.F. Toxins of Cyanobacteria. In Handbook of Toxicology of Chemical Warfare Agents; Elsevier Inc.: Amsterdam, The Netherlands, 2009; p. 9. Available online: https://www.sciencedirect.com/book/9780123744845/handbook-of-toxicology-of-chemical-warfare-agents (accessed on 11 March 2024).
- Merwe, D. Van der Chapter 31. Cyanobacterial (Blue-Green Algae) Toxins. In Handbook of Toxicology of Chemical Warfare Agents; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 421–430. ISBN 9780128001592. [Google Scholar]
- NASA Earth Sciences. Available online: https://power.larc.nasa.gov/data-access-viewer (accessed on 14 March 2024).
- Cuerpos Receptores.-Muestreo; MX-AA-14-1980; Secretaría de Gobierno: Ciudad de Mexico, México, 1980. Available online: https://www.gob.mx/cms/uploads/attachment/file/166769/NMX-AA-014-1980.pdf (accessed on 12 June 2025).
- Pérez-Fernández, C.A.; Romero Jaldin, A.M.; Montaño Mérida, R.; Toranzos, G.A. Estudio De Caso De La Laguna Alalay, Bolivia: Trece Años De Dinámica Ambiental En Una Laguna Eutrofizada. Rev. AIDIS Ing. Ciencias Ambient. Investig. Desarro Práctica 2020, 13, 698. [Google Scholar] [CrossRef]
- López Jiménez, M.A.; Monks, S.; Serrano, A.; Pulido Flores, G.; Gaytan Oyarzun, J.C.; Marisela, L.O. Dinámica de las variables fisicoquímicas del sedimento de la laguna de Tampamachoco, Veracruz, México. Rev. Científica UDO Agríc. 2012, 12, 965–972. [Google Scholar]
- Análisis de Agua-Medición de la Demanda Química de Oxígeno en Aguas Naturales, Residuales y Residuales Tratadas; NMX-AA-030/1-SCFE-2012; Método de Prueba-Parte 1-Método de Reflujo Abierto; Secretaría de Economía: Ciudad de Mexico, México, 2012. Available online: https://www.gob.mx/cms/uploads/attachment/file/166774/NMX-AA-030-1-SCFI-2012.pdf (accessed on 24 July 2024).
- Análisis de Agua-Determinación de la Demanda Bioquímica de Oxígeno en Aguas Naturales Residuaes(DBO5) y Residuales Tratadas-Método de Prueba; NMX-AA-028-SCFI-2; Secretaría de Economía: Ciudad de Mexico, México, 2001. Available online: http://www.economia-nmx.gob.mx/normas/nmx/2001/nmx-aa-028-scfi-2001.pdf (accessed on 12 June 2025).
- ASTM D4972-19; Standard Test Methods for pH of Soils. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: West Conshohocken, PA, USA, 2017.
- Secretaría General de Gobierno Plan Municipal de Desarrollo 2013–2016, Altamira, Tamaulipas. 2013. Available online: https://www.ordenjuridico.gob.mx/Documentos/Estatal/Zacatecas/Todos%20los%20Municipios/wo94772.pdf (accessed on 12 June 2025).
- CONAGUA. Calidad del Agua en México. Available online: https://www.gob.mx/conagua/articulos/calidad-del-agua (accessed on 13 April 2024).
- Romero-Beltrán, E.; Aldana-Flores, G.; Muñoz-Mejía, E.; Medina-Osuna, P.; Valdez-Ledón, P.; Bect Valdez, J.A.; Gaspar Dillanes, M.T.; Huidobro Campos, L.; Romero Correa, A.; Tirado Figueroa, E.; et al. Estudio de la Calidad del Agua y Sedimento en las Lagunas Costeras del Estado de Sinaloa, México; Informe de Investigación; SAGARPA: Sinaloa, México, 2014.
- CONANP. Ficha de Identificación. Eichhornia crassipes; SEMARNAT: Ciudad de México, México, 2014. Available online: https://es-static.z-dn.net/files/dab/471a2d840a0b4ba1f48617f49455a5ef.pdf (accessed on 12 June 2025).
- CONABIO. Método de Evaluación Rápida de Invasividad (MERI) Para Especies Exóticas en México Eichhornia crassipes (Mart.). 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/222546/Pistia_stratiotes.pdf (accessed on 11 March 2024).
- Secretaría General de Gobierno. Plan Municipal de Desarrollo 2021–2024. 2022. Available online: https://congresogro.gob.mx/63/ayuntamientos/plan-municipal/plan-de-desarrollo-municipal-2021-municipio-de-cuautepec.pdf (accessed on 12 June 2025).
- Villagómez-Ibarra, R.; Prieto-Garcia, F.; Delgadillo-López, A.E.; Acevedo-Salazar, O.A.; Velazquez-González, C. Determinación del estado trófico de la laguna. Caso de estudio Laguna de Tecocomulco, Hidalgo, México. DYNA 2019, 86, 104–112. [Google Scholar]
- Cabrera, S.; Montecino, V. Productividad primaria en ecosistemas limnicos. Arch. Biol. Med. Exp. 1987, 20, 105–116. [Google Scholar]
- Nidia Borja, C.; Alvarez Dalinger, F.; Lozano, V.; Muñoz, C.; Moraña, L. Calidad de agua y fitoplancton del lago del Parque San Martín (Salta, Argentina). Lhawet/Nuestro Entorno 2024, 9, 35–43. [Google Scholar]
- Soria-Reinoso, I.; Alcocer, J.; Sánchez-Carrillo, S.; Vargas-Sáncez, M.; Rivera-Herrera, E.M.; Fernández, R.; Oseguera, L.A. Materia orgánica disuelta cromofórica en lagos kársticos tropicales con diferente estado trófico. In Ecosistemas Acuáticos; Programa Mexicano del Carbono en Colaboración con la Universidad del Mar (UMAR): Texcoco, Mexico, 2024; pp. 52–58. [Google Scholar]
- SEDUE CE-CCA-001/89; Acuerdo por el Que se Establecen los Criterios Ecológicos de Calidad del Agua. La Norma Oficial Mexicana; Direccion General de Normas (DGN): Ciudad de México, Mexico, 1989.
- SEDUMA NOM-001-ECOL-1996; Que Establece los Límites Máximos Permisibles de Contaminantes en las Descargas de Aguas Residuales en Aguas y Bienes Nacionales. La Norma Oficial Mexicana; Direccion General de Normas (DGN): Ciudad de México, Mexico, 1996.
- SEMARNAP NOM-003-ECOL-1997; Que Establece los Límites Máximos Permisibles de Contaminantes para las Aguas Residuales Tratadas que se Reusen en Servicios al Público. La Norma Oficial Mexicana; Direccion General de Normas (DGN): Ciudad de México, Mexico, 1997. Available online: https://www.ordenjuridico.gob.mx/Documentos/Federal/wo69207.pdf (accessed on 12 June 2025).
- Pérez Bravo, S.G.; Castañeda Chávez, M.d.R.; Aguilera Vázquez, L.; Gallardo Rivas, N.V. Biological treatment of eutrophicated lagoon water with Tetradesmus dimorphus under ambient conditions: A sustainable alternative for lipid production. Int. J. Environ. Sci. Technol. 2024, 22, 8069–8082. [Google Scholar] [CrossRef]
- Pérez Bravo, S.G.; Castañeda Chávez, M.d.R.; Aguilera Vázquez, L. Prototype flat photobioreactor with a settler for the cultivation of Tetradesmus dimorphus under mixotrophic metabolism under ambient conditions. Rev. Mex. Ing. Química 2024, 23, 24287. [Google Scholar] [CrossRef]
- Espinal Carreón, T.; Sedeño Díaz, J.E.; López López, E. Evaluación de la calidad del agua en la laguna de Yuriria, Guanajuato, México, mediante técnicas multivariadas: Un análisis de valoración para dos épocas 2005, 2009–2010. Rev. Int. Contam. Ambient. 2013, 29, 147–163. [Google Scholar]
- SEDUE. Acuerdo por el Que se Establecen los Criterios Ecologicos de Calidad del Agua CE-CAA 001/89. 1989. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5232012&fecha=02/02/2012 (accessed on 27 December 2018).
- Calva Benítez, L.G.; Torres Alvarado, R.; Cruz Toledo, J.C. Carbono orgánico y características texturales de los sedimentos del sistema costero lagunar Carretas-Pereyra, Chiapas. Hidrobiologica 2009, 19, 33–42. [Google Scholar]
- Flores, C.M.; Del-Angel, E.; Frías, D.M.; Gómez, A.L.; Flores, C.M.; Del-Angel, E.; Frías, D.M.; Gómez, A.L. Evaluación de parámetros fisicoquímicos y metales pesados en agua y sedimento superficial de la Laguna de las Ilusiones, Tabasco, México. Tecnol. Ciencias Agua 2018, 9, 39–57. [Google Scholar] [CrossRef]
Sample Point | Coordinates GMS |
---|---|
1 | 22°26′2.926′′ N, 97°53′16.22′′ W |
2 | 22°25′58.656′′ N, 97°53′6.514′′ W |
3 | 22°25′46.204′′ N, 97°53′1.003′′ W |
4 | 22°25′21.422′′ N, 97°52′51.034′′ W |
5 | 22°25′9.872′′ N, 97°52′48.313′′ W |
Sampling Point | Coordinates GMS |
---|---|
1 | 22°25′41.699′′ N, 97°52′46.714′′ W |
2 | 22°25′44.1′′ N, 97°52′49.5′′ W |
3 | 22°25′49.3′′ N, 97°52′49.799′′ W |
4 | 22°25′52.7′′ N, 97°52′50.199′′ W |
5 | 22°25′53.6′′ N, 97°52’53.0′′ W |
6 | 22°25’54.4′′ N, 97°52’55.999′′ W |
7 | 22°25’55.3′′ N, 97°52’58.0′′ W |
8 | 22°25’54.9′′ N, 97°53’4.999′′ W |
9 | 22°25′55.6′′ N, 97°53′4.999′′ W |
10 | 22°25′50.2′′ N, 97°53′6.299′′ W |
11 | 22°25′47.9′′ N, 97°53′6.6′′ W |
12 | 22°25′43.9′′ N, 97°53′7.0′′ W |
13 | 22°25′41.2′′ N, 97°53′8.0′′ W |
14 | 22°25′39.5′′ N, 97°53′6.6′′ W |
15 | 22°25′36.0′′ N, 97°53′1.413′′ W |
Rating | Criteria (mg/L) | |
---|---|---|
Excellent 1 | COD ≤ 10 | BOD5 ≤ 3 |
Good quality 2 | 10 < COD ≤ 20 | 3 < BOD5 ≤ 6 |
Acceptable 3 | 20 < COD ≤ 40 | 6 < BOD5 ≤ 30 |
Polluted 4 | 40 < COD ≤ 200 | 30 < BOD5 ≤ 120 |
Heavily polluted 5 | COD > 200 | BOD5 > 120 |
Period | pH | Temperature (°C) | Parameter (mg/L) | Quality |
---|---|---|---|---|
July–August | 7 | 32–33 | COD = 130.8–200 | Polluted |
BOD5 = 50.6–112.75 | Contaminated | |||
September–October | 7 | 26–33 | COD = 117.3–143.7 | Polluted |
BOD5 = 21.8–47 | Acceptable–Polluted | |||
November–December | 7 | 18–24 | COD = 137.19–151.6 | Polluted |
BOD5 = 15.8–60 | Acceptable–Polluted |
Sampling Point | Sediment Sample (g) | Depth (m) | pH | Sediment -Retained (g) Mesh #4 (4.75 mm) | Sediment -Retained (g) Mesh #40 (0.425 mm) | Sediment -Retained (g) Mesh #200 (0.075 mm) | Bottom | % Gravels | % Sands | % Finos | Type of Sediment |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 175 | 1.3 | 7.8 | 0 | 31 | 130 | 14 | 0 | 92.0 | 8.0 | SP 6-SM 7 |
2 | 105 | 1.3 | 6.9 | 0 | 0 | 21 | 84 | 0 | 20.0 | 80.0 | CL 8 |
3 | 86 | 1.3 | 6.9 | 0 | 9 | 69 | 8 | 0 | 90.7 | 9.3 | SP-SM |
4 | 195 | 1.3 | 6.4 | 0 | 0 | 183 | 12 | 0 | 93.8 | 6.2 | SP-SM |
5 | 289 | 1.15 | 6.6 | 7 | 17 | 251 | 14 | 2.4 | 92.7 | 4.8 | SP |
6 | 543 | 1.2 | 6.3 | 9 | 24 | 492 | 18 | 1.7 | 95.0 | 3.3 | SP |
7 | 360 | 1.3 | 6.9 | 0 | 14 | 329 | 17 | 0 | 95.3 | 4.7 | SP |
8 | 345 | 1.3 | 6.9 | 0 | 60 | 271 | 14 | 0 | 95.9 | 4.1 | SP |
9 | 42 | 1.6 | 7.2 | 0 | 0 | 19 | 23 | 0 | 45.2 | 54.8 | CL |
10 | 220 | 2.2 | 7.3 | 0 | 0 | 138 | 82 | 0 | 62.7 | 37.3 | SM |
11 | 90 | 3.0 | 7.0 | 0 | 0 | 20 | 70 | 0 | 22.2 | 77.8 | CL |
12 | 60 | 3.2 | 7.1 | 0 | 0 | 13 | 47 | 0 | 21.7 | 78.3 | CL |
13 | 125 | 3.2 | 6.6 | 0 | 0 | 26 | 99 | 0 | 20.8 | 79.2 | CL |
14 | 267 | 2.5 | 6.6 | 4 | 12 | 237 | 14 | 1.5 | 93.3 | 5.2 | SP-SM |
15 | 303 | 1.5 | 7.0 | 0 | 18 | 279 | 6 | 0 | 98.0 | 2.0 | SP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Bravo, S.G.; Soriano-Mar, J.; Páramo-García, U.; Aguilera-Vázquez, L.; Martínez-Cardenas, L.; Dávila-Camacho, C.A.; Castañeda-Chávez, M.d.R. Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico. Earth 2025, 6, 83. https://doi.org/10.3390/earth6030083
Pérez-Bravo SG, Soriano-Mar J, Páramo-García U, Aguilera-Vázquez L, Martínez-Cardenas L, Dávila-Camacho CA, Castañeda-Chávez MdR. Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico. Earth. 2025; 6(3):83. https://doi.org/10.3390/earth6030083
Chicago/Turabian StylePérez-Bravo, Sheila Genoveva, Jonathan Soriano-Mar, Ulises Páramo-García, Luciano Aguilera-Vázquez, Leonardo Martínez-Cardenas, Claudia Araceli Dávila-Camacho, and María del Refugio Castañeda-Chávez. 2025. "Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico" Earth 6, no. 3: 83. https://doi.org/10.3390/earth6030083
APA StylePérez-Bravo, S. G., Soriano-Mar, J., Páramo-García, U., Aguilera-Vázquez, L., Martínez-Cardenas, L., Dávila-Camacho, C. A., & Castañeda-Chávez, M. d. R. (2025). Physicochemical and Sediment Characterization of El Conejo Lagoon in Altamira, Tamaulipas, Mexico. Earth, 6(3), 83. https://doi.org/10.3390/earth6030083