Macroeconomic, Food and Energy Security Implications of Water Dependency under a Changing Climate: A Computable General Equilibrium Assessment †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Results
3.2. Freshwater Limit Assessment
3.3. Economic Results of the Introduction of Water Climate Constraints in Middle East
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist; Random House: London, UK, 2017. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operation Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Hoff, H. Understanding the Nexus. In Proceedings of the Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus, Stockholm, Germany, 16–18 November 2011. [Google Scholar]
- World Economic Forum. Water Security: The Water-Food-Energy-Climate Nexus; Island Press: Washington, DC, USA; Covelo, CA, USA; London, UK, 2011. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the Energy, Water and Food Nexus: Towards an Integrated Modelling Approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Rasul, G. Managing the Food, Water, and Energy Nexus for Achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water–Energy–Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; The International Institute for Sustainable Development: Winnipeg, MB, Canada, 2013. [Google Scholar]
- Eboli, F.; Parrado, R.; Roson, R. Climate-Change Feedback on Economic Growth: Explorations with a Dynamic General Equilibrium Model. Environ. Dev. Econ. 2010, 15, 515–533. [Google Scholar] [CrossRef] [Green Version]
- Bosello, F.; Eboli, F.; Pierfederici, R. Assessing the Economic Impacts of Climate Change. Rev. Environ. Energy Econ. (Re3). 2012. Available online: https://econpapers.repec.org/article/femfemre3/2012.02-03.htm (accessed on 29 March 2022).
- Bardazzi, E.; Bosello, F. Critical Reflections on Water-Energy-Food Nexus in Computable General Equilibrium Models: A Systematic Literature Review. Environ. Model. Softw. 2021, 145. [Google Scholar] [CrossRef]
- Bardazzi, E.; Standardi, G.; Hernández, R.E.K.; Bosello, F. Introducing the Water-Energy Link in a General Equilibrium Model: ICES-WN. In Proceedings of the 24th Annual Conference on Global Economic Analysis “Global Food System: Opportunities and Challenges”, Virtual, 23–25 June 2021. [Google Scholar]
- Roson, R.; Damania, R. Simulating the Macroeconomic Impact of Future Water Scarcity: An Assessment of Alternative Scenarios; IEFE Working Papers; IEFE: Milano, Italy, 2016; p. 84. [Google Scholar] [CrossRef]
- Darwin, R. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare. Clim. Chang. 2004, 66, 191–238. [Google Scholar] [CrossRef]
- Taheripour, F.; Hertel, T.W.; Liu, J. Introducing Water by River Basin into the GTAP-BIO Model: GTAP-BIO-W. In Proceedings of the 2013 GTAP Conference, Shanghai, China, 10–11 June 2013; Available online: http://econpapers.repec.org/RePEc:gta:workpp:4304 (accessed on 29 March 2022).
- Teotónio, C.; Rodríguez, M.; Roebeling, P.; Fortes, P. Water Competition through the ‘Water-Energy’ Nexus: Assessing the Economic Impacts of Climate Change in a Mediterranean Context. Energy Econ. 2020, 85, 104539. [Google Scholar] [CrossRef]
- Nechifor, V.; Winning, M. Global Economic and Food Security Impacts of Demand-Driven Water Scarcity—Alternative Water Management Options for a Thirsty World. Water 2018, 10, 1442. [Google Scholar] [CrossRef] [Green Version]
- Calzadilla, A.; Rehdanz, K.; Tol, R.S.J. The GTAP-W Model: Accounting for Water Use in Agriculture; Kiel Working Paper: Kiel, Germany, 2011. [Google Scholar]
- Nechifor, V.; Winning, M. Projecting Irrigation Water Requirements across Multiple Socio-Economic Development Futures—A Global CGE Assessment. Water Resour. Econ. 2017, 20, 16–30. [Google Scholar] [CrossRef]
- Berrittella, M.; Hoekstra, A.Y.; Rehdanz, K.; Roson, R.; Tol, R.S.J. The Economic Impact of Restricted Water Supply: A Computable General Equilibrium Analysis. Water Res. 2007, 41, 1799–1813. [Google Scholar] [CrossRef]
- Van Heerden, J.H.; Blignaut, J.; Horridge, M. Integrated Water and Economic Modelling of the Impacts of Water Market Instruments on the South African Economy. Ecol. Econ. 2008, 66, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Haqiqi, I.; Taheripour, F.; Liu, J.; van der Mensbrugghe, D. Introducing Irrigation Water into GTAP Data Base Version 9 (Supplementary Files). J. Glob. Econ. Anal. 2016, 1, 116–155. [Google Scholar] [CrossRef] [Green Version]
- IEA. World Energy Outlook 2012; International Energy Agency: Paris, France, 2012. [Google Scholar]
- IEA. Water Energy Nexus—Excerpt from the World Energy Outlook 2016; International Energy Agency: Paris, France, 2016. [Google Scholar]
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
- Aguiar, A.; Narayanan, B.; McDougall, R. An Overview of the GTAP 9 Data Base. J. Glob. Econ. Anal. 2016, 1, 181–208. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L. A New Scenario Framework for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.; Kriegler, E.; Ebi, K.L.; Kemp-benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Nakicenovic, N.; Smith, S.J.; Rose, S.K. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Samir, K.; Lutz, W. The Human Core of the Shared Socioeconomic Pathways: Population Scenarios by Age, Sex and Level of Education for All Countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Crespo Cuaresma, J. Income Projections for Climate Change Research: A Framework Based on Human Capital Dynamics. Glob. Environ. Chang. 2017, 42, 226–236. [Google Scholar] [CrossRef] [Green Version]
- FAO. Aquastat Database. Available online: https://www.fao.org/aquastat/statistics/query/index.html;jsessionid=65D6F15F114C685D37BD05FC3B9534C7 (accessed on 25 July 2021).
- The Inter-Sectoral Impact Model Intercomparison Project. ISIMIP2b Simulation Protocol-Water. 2020. Available online: https://www.isimip.org/ (accessed on 25 July 2021).
- Warszawski, L.; Frieler, K.; Huber, V.; Piontek, F.; Serdeczny, O.; Schewe, J. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project Framework. Proc. Natl. Acad. Sci. USA 2014, 111, 3228–3232. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate Change Impact on Available Water Resources Obtained Using Multiple Global Climate and Hydrology Models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Shiogama, H.; Nakaegawa, T.; Takayabu, I. Uncertainties in Climate Change Projections Covered by the ISIMIP and CORDEX Model Subsets from CMIP5. Geosci. Model Dev. 2020, 13, 859–872. [Google Scholar] [CrossRef] [Green Version]
Only Irrigated Agriculture | ||||||
---|---|---|---|---|---|---|
Irrigated Agriculture | Energy | |||||
Region | qo | qpm | qpd | qo | qpm | qpd |
OECD Europe | 42.47 | 10.69 | −7.31 | 24.35 | 165.94 | 67.11 |
OECD America | 28.68 | 92.72 | −12.88 | 18.09 | 207.10 | 68.85 |
OECDAOceania | 24.33 | 9.74 | −9.93 | −13.87 | 207.55 | 36.43 |
OtherEuEurasia | 56.16 | 39.63 | −22.62 | 64.15 | 151.36 | 106.08 |
Asia | 91.37 | 36.10 | 15.70 | 232.75 | 73.86 | 151.64 |
China | 181.64 | 131.75 | −35.16 | 556.43 | −43.97 | 224.84 |
India | 223.57 | −15.89 | 59.25 | 794.33 | −61.41 | 361.19 |
Middle East | 30.00 | 5.49 | −17.91 | 46.17 | 90.97 | 59.83 |
Africa | 84.10 | 16.93 | 16.26 | 178.18 | 135.33 | 146.86 |
Latin America | 50.43 | 28.15 | −1.66 | 43.71 | 215.90 | 119.13 |
Irrigated Agriculture and Energy | ||||||
Irrigated Agriculture | Energy | |||||
Region | qo | qpm | qpd | qo | qpm | qpd |
OECD Europe | 61.85 | 3.01 | 0.90 | 28.17 | 39.67 | 6.18 |
OECD America | 93.31 | 76.77 | −6.65 | −32.02 | 285.53 | −25.35 |
OECDAOceania | 18.66 | 39.20 | −13.57 | 117.12 | −21.12 | 0.12 |
OtherEuEurasia | 33.76 | 77.50 | −17.92 | 106.42 | 98.01 | 84.68 |
Asia | 78.77 | 66.13 | 22.52 | 286.79 | 99.68 | 109.67 |
China | 201.99 | 215.23 | −40.55 | 81.39 | 531.08 | 48.04 |
India | 199.70 | 37.39 | 51.02 | 754.62 | −60.23 | 237.81 |
Middle East | 22.89 | 27.13 | 0.25 | 74.18 | 63.94 | 51.87 |
Africa | 68.04 | 69.61 | 28.44 | 183.06 | 149.08 | 127.73 |
Latin America | 42.59 | 58.48 | 1.29 | 111.50 | 82.31 | 67.96 |
Regions | Freshwater Available | Water Withdrawn (I. + E.) | Water Withdrawn (I.) | Diff AV-W (I. + E.) 8.5 | Diff AV-W (I. + E.)2.6 | Diff AV-W (I.)8.5 | Diff AV-W (I.)2.6 | ||
---|---|---|---|---|---|---|---|---|---|
2011 | 2030_8.5 | 2030_2.6 | |||||||
OECD Europe | 2.59 | 2.75 | 2.82 | 0.15 | 0.09 | 2.60 | 2.66 | 2.66 | 2.73 |
OECD America | 7.36 | 7.62 | 8.62 | 0.50 | 0.26 | 7.12 | 8.12 | 7.36 | 8.36 |
OECD Oceania | 1.32 | 1.58 | 1.73 | 0.069 | 0.064 | 1.51 | 1.67 | 1.51 | 1.67 |
OtherEuEurasia | 5.73 | 4.98 | 6.68 | 0.26 | 0.17 | 4.72 | 6.42 | 4.81 | 6.52 |
Asia | 8.38 | 7.04 | 14.1 | 0.70 | 0.69 | 6.34 | 1.34 | 6.35 | 1.34 |
China | 2.84 | 5.89 | 12.5 | 0.54 | 0.43 | 5.35 | 1.19 | 5.46 | 1.20 |
India | 1.91 | 3.96 | 8.40 | 0.75 | 0.71 | 3.21 | 7.65 | 3.25 | 7.69 |
Middle East | 0.26 | 0.11 | 0.037 | 0.21 | 0.20 | −0.097 | −0.17 | −0.094 | −0.17 |
Africa | 2.84 | 1.96 | 3.26 | 0.23 | 0.22 | 1.73 | 3.04 | 1.74 | 3.04 |
Latin America | 17.8 | 6.78 | 141 | 0.16 | 0.14 | 6.62 | 141 | 6.63 | 141 |
IRR.AG.ONLY | Baseline | 8.50 | 2.60 | ||||||
---|---|---|---|---|---|---|---|---|---|
Irr. Ag. | Energy | GDP | Irr. Ag. | Energy | GDP | Irr. Ag | Energy | GDP | |
2015 | 13.15 | 13.50 | 16.83 | 13.11 | 13.47 | 16.77 | −3.84 | 14.12 | 16.51 |
2020 | 6.72 | 10.53 | 12.61 | −12.01 | 11.84 | 10.14 | −37.83 | 17.30 | 5.30 |
2025 | 2.73 | 7.73 | 9.65 | −19.88 | 10.00 | −0.03 | −39.87 | 13.05 | −9.15 |
2030 | 4.79 | 8.15 | 10.24 | −18.17 | 8.83 | −2.84 | −38.48 | 8.27 | −11.66 |
2011–2030 | 30.00 | 46.17 | 59.03 | −34.74 | 51.92 | 24.92 | −77.89 | 63.83 | −1.54 |
IRR.AG + EN | Irr. Ag | Energy | GDP | Irr. Ag. | Energy | GDP | Irr. Ag. | Energy | GDP |
2015 | 12.84 | 14.29 | 16.82 | 12.84 | 14.29 | 16.82 | −4.30 | 15.04 | 16.58 |
2020 | 5.48 | 16.91 | 12.54 | −12.57 | 18.53 | 11.63 | −38.72 | 22.10 | 8.81 |
2025 | 0.70 | 16.51 | 9.66 | −20.25 | 18.33 | 5.92 | −41.47 | 18.73 | 0.56 |
2030 | 2.52 | 11.88 | 10.26 | −18.87 | 12.42 | 4.52 | −41.37 | 11.15 | −0.69 |
2011–2030 | 22.89 | 74.18 | 58.97 | −36.16 | 80.21 | 44.37 | −79.88 | 85.38 | 26.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardazzi, E. Macroeconomic, Food and Energy Security Implications of Water Dependency under a Changing Climate: A Computable General Equilibrium Assessment. Environ. Sci. Proc. 2022, 15, 1. https://doi.org/10.3390/environsciproc2022015001
Bardazzi E. Macroeconomic, Food and Energy Security Implications of Water Dependency under a Changing Climate: A Computable General Equilibrium Assessment. Environmental Sciences Proceedings. 2022; 15(1):1. https://doi.org/10.3390/environsciproc2022015001
Chicago/Turabian StyleBardazzi, Elisa. 2022. "Macroeconomic, Food and Energy Security Implications of Water Dependency under a Changing Climate: A Computable General Equilibrium Assessment" Environmental Sciences Proceedings 15, no. 1: 1. https://doi.org/10.3390/environsciproc2022015001
APA StyleBardazzi, E. (2022). Macroeconomic, Food and Energy Security Implications of Water Dependency under a Changing Climate: A Computable General Equilibrium Assessment. Environmental Sciences Proceedings, 15(1), 1. https://doi.org/10.3390/environsciproc2022015001