A New Organic Amendment Based on Insect Frass for Zucchini (Cucurbita pepo L.) Cultivation †
Abstract
:1. Introduction
2. Materials & Method
2.1. Location of the Trial and Plant Material
2.2. Preparation of the Culture Substrates
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
Growth Attributes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; van Loon, J.J.; Dicke, M. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Curr. Opin. Environ. Sustain. 2019, 41, 23–30. [Google Scholar] [CrossRef]
- Chavez, M.; Uchanski, M. Insect left-over substrate as plant fertilizer. J. Insects Food Feed 2021, 7, 683–694. [Google Scholar] [CrossRef]
- Poveda, J.; Jiménez-Gómez, A.; Saati-Santamaría, Z.; Usategui-Martín, R.; Rivas, R.; García-Fraile, P. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Appl. Soil Ecol. 2019, 142, 110–122. [Google Scholar] [CrossRef]
- Schmitt, E.; de Vries, W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr. Opin. Green Sustain. Chem. 2020, 25, 100335. [Google Scholar] [CrossRef]
- Temple, W.D.; Radley, R.; Baker-French, J.; Richardson, F. Use of Enterra Natural Fertilizer (Black Soldier Fly Larvae Digestate) as a Soil Amendment; Enterra Feed Corporation: Langley City, BC, Canada, 2013. [Google Scholar]
- Przemieniecki, S.W.; Kosewska, A.; Purwin, C.; Zapałowska, A.; Mastalerz, J.; Kotlarz, K.; Kolaczek, K. Biometric, chemical, and microbiological evaluation of common wheat (Triticum aestivum L.) seedlings fertilized with mealworm (Tenebrio molitor L.) larvae meal. Appl. Soil Ecol. 2021, 167, 104037. [Google Scholar] [CrossRef]
- West, D.; Taylor, J. Response of six grape cultivars to the combined effects of high salinity and rootzone waterlogging. J. Am. Soc. 1984, 109, 844–851. [Google Scholar]
- Graifenberg, A.; Botrini, L.; Giustiniani, L.; Lipucci Di Paola, M. Yield, growth and element content of zucchini squash grown under saline-sodic conditions. J. Hortic. Sci. 1996, 71, 305–311. [Google Scholar] [CrossRef]
- Razzaghifard, S.; Gholipouri, A.; Tobeh, A.; Meshkini, S. Effect of mycorrhiza, vermicompost and nanofertilizer on quantitative and qualitative characteristics of Cucurbita pepo L. Eur. J. Hortic. Sci. 2017, 82, 105–114. [Google Scholar] [CrossRef]
Chemical Characteristics | Composition | Unit | |||
---|---|---|---|---|---|
Hermetia illucins Frass | Tenebrio molitor Frass | Vermicompost | Cattle Manure | ||
OM | 8.02 | 7.65 | 7.87 | % | |
C/N | 4.02 | 3.84 | 20.20 | 20.00 | - |
pH | 7.05 | 5.97 | 8.60 | 8.13 | - |
EC | 15.19 | 6.47 | 2.07 | 1.33 | (mS/cm) |
N | 1.18 | 1.16 | 0.23 | 0.62 | % |
K | 0.38 | 0.35 | 0.38 | 0.61 | % |
Ca | 3.13 | 2.44 | 46.28 | 261.30 | Meq/100 g |
Mg | 6.30 | 66.36 | 22.86 | 84.70 | Meq/100 g |
Na | 60.23 | 11.92 | 7.52 | - | Meq/100 g |
Zn | 17.51 | 10.34 | 2.41 | 1.49 | mg/Kg |
Mn | 1.87 | 1.87 | 1.87 | 2.68 | mg/Kg |
Fe | 6.20 | 15.77 | 3.48 | 64.00 | mg/Kg |
Cu | 0.92 | 1.05 | 0.16 | 0.20 | mg/Kg |
Number of Fruits per Plant | Plant Height (cm) | Dry Weight of Leaves (g) | Leaf Area (cm²) | Fresh Root Weight (g) | Average Fruit Weight (g) | |
---|---|---|---|---|---|---|
Control (T) | 2.45 (b) | 102.7 (e) | 30.94 (c) | 16,956.75 (d) | 24.06 (d) | 292.55 (b) |
Cattle manure (Cm) | 2.95 (a) | 106.6 (c) | 36.79 (b) | 18,839.46 (b) | 27.48 (c) | 299.47 (b) |
Vermicompost (V) | 2.65 (ab) | 111.0 (b) | 40.61 (a) | 19,541.45 (a) | 33.95 (a) | 320.42 (a) |
Hermetia illucins frass (FBSF) | 2.50 (b) | 106.1 (d) | 36.48 (b) | 18,049.94 (c) | 30.50 (b) | 298.42 (b) |
Tenebrio molitor frass (FTM) | 2.00 (c) | 114.4 (a) | 42.26 (a) | 19,905.52 (a) | 34.45 (a) | 323.42 (a) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zim, J.; Aitikkou, A.; EL Omari, M.H.; EL Malahi, S.; Azim, K.; Hirich, A.; Nilahyane, A.; Oumouloud, A. A New Organic Amendment Based on Insect Frass for Zucchini (Cucurbita pepo L.) Cultivation. Environ. Sci. Proc. 2022, 16, 28. https://doi.org/10.3390/environsciproc2022016028
Zim J, Aitikkou A, EL Omari MH, EL Malahi S, Azim K, Hirich A, Nilahyane A, Oumouloud A. A New Organic Amendment Based on Insect Frass for Zucchini (Cucurbita pepo L.) Cultivation. Environmental Sciences Proceedings. 2022; 16(1):28. https://doi.org/10.3390/environsciproc2022016028
Chicago/Turabian StyleZim, Jamaa, Amlal Aitikkou, Moulay Hicham EL Omari, Soumia EL Malahi, Khalid Azim, Abdelaziz Hirich, Abdelaziz Nilahyane, and Ali Oumouloud. 2022. "A New Organic Amendment Based on Insect Frass for Zucchini (Cucurbita pepo L.) Cultivation" Environmental Sciences Proceedings 16, no. 1: 28. https://doi.org/10.3390/environsciproc2022016028
APA StyleZim, J., Aitikkou, A., EL Omari, M. H., EL Malahi, S., Azim, K., Hirich, A., Nilahyane, A., & Oumouloud, A. (2022). A New Organic Amendment Based on Insect Frass for Zucchini (Cucurbita pepo L.) Cultivation. Environmental Sciences Proceedings, 16(1), 28. https://doi.org/10.3390/environsciproc2022016028