Dissection of Genomic Regions for Ion Homeostasis under Sodic Salt Stress in MAGIC Rice Population †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Extent of Salt Affected Soils. 2014. Available online: http://www.fao.org/soils-portal/soil-management/management-of-someproblem-soils/salt-affected-soils/more-information-on-saltaffected-soils/en/ (accessed on 3 December 2014).
- Krishnamurthy, S.L.; Gautam, R.; Sharma, P.; Sharma, D. Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crop. Res. 2016, 190, 26–33. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Sharma, P.; Sharma, D.; Ravikiran, K.; Singh, Y.; Mishra, V.; Burman, D.; Maji, B.; Mandal, S.; Sarangi, S.K.; et al. Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India. Sci. Rep. 2017, 7, 7968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warraich, A.; Krishnamurthy, S.; Sooch, B.; Vinaykumar, N.; Dushyanthkumar, B.; Bose, J.; Sharma, P.C. Rice GWAS reveals key genomic regions essential for salinity tolerance at reproductive stage. Acta Physiol. Plant. 2020, 42, 134. [Google Scholar] [CrossRef]
- Prakash, N.R.; Lokeshkumar, B.M.; Rathor, S.; Warraich, A.S.; Yadav, S.; Vinaykumar, N.M.; Dushynthkumar, B.M.; Krishnamurthy, S.L.; Sharma, P.C. Meta-analysis and validation of genomic loci governing seedling and reproductive stage salinity tolerance in rice. Physiol. Plant. 2022, 18, e13629. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, G.B. Tagging Salinity Tolerance Genes in Rice Using Amplified Fragment Length Polymorphism (AFLP). Ph.D. Thesis, University of the Philippines Los Banõs, Laguna, Philippines, 1997. [Google Scholar]
- Babu, N.; Krishnan, S.; Vinod, K.; Krishnamurthy, S.; Singh, V.; Singh, M.; Singh, R.; Ellur, R.K.; Rai, V.; Bollinedi, H.; et al. Marker Aided Incorporation of Saltol, a Major QTL Associated with Seedling Stage Salt Tolerance, into Oryzasativa ‘Pusa Basmati 1121’. Front. Plant Sci. 2017, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, S.L.; Pundir, P.; Warraich, A.S.; Rathor, S.; Lokeshkumar, B.M.; Singh, N.K.; Sharma, P.C. Introgressed Saltol QTL Lines Improves the Salinity Tolerance in Rice at Seedling Stage. Front. Plant Sci. 2020, 11, 833. [Google Scholar] [CrossRef] [PubMed]
- Bandillo, N.; Raghavan, C.; Muyco, P.; Sevilla, M.; Lobina, I.; Dilla-Ermita, C.; Tung, C.; McCouch, S.; Thomson, M.; Mauleon, R.; et al. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding. Rice 2013, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shavrukov, Y. Salt stress or salt shock: Which genes are we studying? J. Exp. Bot. 2012, 64, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Guan, Y.; Wu, Y.; Chen, H.; Chen, F.; Chu, C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 2008, 67, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Li, S.; Wang, K.; Tian, H.; Gao, J.; Zhao, Q.; Du, C. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. Plant Sci. 2020, 296, 110465. [Google Scholar] [CrossRef] [PubMed]
- Brautigan, D.; Rengasamy, P.; Chittleborough, D. Aluminium speciation and phytotoxicity in alkaline soils. Plant Soil 2012, 360, 187–196. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.; Dai, X.; Zhang, W.H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; DalCorso, G.; Costa, A.; Zenoni, S.; Furini, A. The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Mol. Biol. 2019, 99, 517–534. [Google Scholar] [CrossRef]
- Ojeda, V.; Pérez-Ruiz, J.M.; González, M.; Nájera, V.A.; Sahrawy, M.; Serrato, A.J.; Geigenberger, P.; Cejudo, F.J. NADPH ThioredoxinReductase C and Thioredoxins Act Concertedly in Seedling Development. Plant Physiol. 2017, 174, 1436–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valerio, C.; Costa, A.; Marri, L.; Issakidis-Bourguet, E.; Pupillo, P.; Trost, P.; Sparla, F. Thioredoxin-regulated beta-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J. Exp. Bot. 2011, 62, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Thormählen, I.; Meitzel, T.; Groysman, J.; Öchsner, A.B.; von Roepenack-Lahaye, E.; Naranjo, B.; Cejudo, F.J.; Geigenberger, P. Thioredoxin f1 and NADPH-Dependent ThioredoxinReductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. Plant Physiol. 2015, 169, 1766–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa Téllez, S.; Kanhonou, R.; CastelloteBellés, C.; Serrano, R.; Alepuz, P.; Ros, R. RNA-Binding Proteins as Targets to Improve Salt Stress Tolerance in Crops. Agronomy 2020, 10, 250. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, P.; Tyagi, A. OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Sci. Rep. 2015, 5, 9998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sl. No | Trait | QTL | Chromosome | Position | p Value | LOD | Locus ID | Gene Annotation |
---|---|---|---|---|---|---|---|---|
1 | Shoot length | Sod_SL.1 | 10 | 19621750 | 1.50 × 10−5 | 4.82 | LOC_Os10g36690 | Dehydration response related protein, putative, expressed |
2 | Na | Sod_Na.1 | 1 | 23642384 | 1.54 × 10−5 | 4.81 | LOC_Os01g41770 | Leucine rich repeat protein, putative, expressed |
3 | Sod_Na.2 | 4 | 11638572 | 7.35 × 10−5 | 4.13 | LOC_Os04g20749 | Expressed protein | |
4 | Sod_Na.3 | 8 | 4773918 | 2.38 × 10−6 | 5.62 | |||
5 | K | Sod_K.1 | 2 | 19479355 | 0.000375 | 3.43 | LOC_Os02g32814 | Heavy metal-associated domain containing protein, expressed |
6 | Ca | Sod_Ca.1 | 8 | 9069848 | 1.11 × 10−5 | 4.95 | LOC_Os08g15020 | MYB family transcription factor, putative, expressed |
7 | Mg | Sod_Mg.1 | 10 | 16228910 | 3.41 × 10−7 | 6.47 | LOC_Os10g31040 | Citrate transporter protein, putative, expressed |
8 | K/Na | Sod_K/Na.1 | 2 | 29313685 | 1.60 × 10−8 | 7.80 | ||
9 | 2 | 29550035 | 2.60 × 10−5 | 4.58 | LOC_Os02g48290 | Thioredoxinreductase 2, putative, expressed | ||
10 | 2 | 29596887 | 1.22 × 10−5 | 4.91 | LOC_Os02g48340 | RNA recognition motif containing protein, putative, expressed | ||
11 | 2 | 29602570 | 1.22 × 10−5 | 4.91 | LOC_Os02g48350 | Diacylglycerol O-acyltransferase, putative, expressed | ||
12 | 2 | 29602596 | 1.22 × 10−5 | 4.91 | ||||
13 | 2 | 29602600 | 1.22 × 10−5 | 4.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rathor, S.; Krishnamurthy, S.L.; Lokeshkumar, B.M.; Warraich, A.S.; Yadav, S.; Sharma, P.C.; Singh, R.K. Dissection of Genomic Regions for Ion Homeostasis under Sodic Salt Stress in MAGIC Rice Population. Environ. Sci. Proc. 2022, 16, 39. https://doi.org/10.3390/environsciproc2022016039
Rathor S, Krishnamurthy SL, Lokeshkumar BM, Warraich AS, Yadav S, Sharma PC, Singh RK. Dissection of Genomic Regions for Ion Homeostasis under Sodic Salt Stress in MAGIC Rice Population. Environmental Sciences Proceedings. 2022; 16(1):39. https://doi.org/10.3390/environsciproc2022016039
Chicago/Turabian StyleRathor, Suman, Saraswathipura L. Krishnamurthy, Bayragondlu M. Lokeshkumar, Arvinder S. Warraich, Satyendra Yadav, Parbodh C. Sharma, and Rakesh Kumar Singh. 2022. "Dissection of Genomic Regions for Ion Homeostasis under Sodic Salt Stress in MAGIC Rice Population" Environmental Sciences Proceedings 16, no. 1: 39. https://doi.org/10.3390/environsciproc2022016039
APA StyleRathor, S., Krishnamurthy, S. L., Lokeshkumar, B. M., Warraich, A. S., Yadav, S., Sharma, P. C., & Singh, R. K. (2022). Dissection of Genomic Regions for Ion Homeostasis under Sodic Salt Stress in MAGIC Rice Population. Environmental Sciences Proceedings, 16(1), 39. https://doi.org/10.3390/environsciproc2022016039