Using Crossborder Multisource Burned Area Datasets for Assessing Wildfire Susceptibility Using Machine Learning Techniques †
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Reference
- Tonini, M.; D’Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meschi, G.; Trucchia, A.; Biondi, G.; Fiorucci, P. Using Crossborder Multisource Burned Area Datasets for Assessing Wildfire Susceptibility Using Machine Learning Techniques. Environ. Sci. Proc. 2022, 17, 33. https://doi.org/10.3390/environsciproc2022017033
Meschi G, Trucchia A, Biondi G, Fiorucci P. Using Crossborder Multisource Burned Area Datasets for Assessing Wildfire Susceptibility Using Machine Learning Techniques. Environmental Sciences Proceedings. 2022; 17(1):33. https://doi.org/10.3390/environsciproc2022017033
Chicago/Turabian StyleMeschi, Giorgio, Andrea Trucchia, Guido Biondi, and Paolo Fiorucci. 2022. "Using Crossborder Multisource Burned Area Datasets for Assessing Wildfire Susceptibility Using Machine Learning Techniques" Environmental Sciences Proceedings 17, no. 1: 33. https://doi.org/10.3390/environsciproc2022017033