Lung Dosimetry Modelling in Nanotoxicology: A Critical Analysis of the State of the Art †
Abstract
:1. Introduction
2. Lung Dosimetry Modelling of Nanomaterials
3. Lung Dosimetry Models Widely Implemented in Nanotoxicology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gojova, A.; Guo, B.; Kota, R.S.; Rutledge, J.C.; Kennedy, I.M.; Barakat, A.I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: Effect of particle composition. Environ. Health Perspect. 2007, 115, 403–409. [Google Scholar] [CrossRef]
- Park, M.V.D.Z.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810–9817. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Orsiere, T.; De Meo, M.; Thill, A.; Zeyons, O.; Proux, O.; Masion, A.; Chaurand, P.; Spalla, O. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 2009, 3, 161–171. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R.H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009, 69, 8784–8789. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, M.; Miragoli, M.; Rohr, S.; Müller, L.; Wick, P.; Mohr, M.; Gehr, P.; Rothen-Rutishauser, B. Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro. Toxicology 2008, 253, 70–78. [Google Scholar] [CrossRef]
- Kuempel, E.; Tran, C.; Castranova, V.; Bailer, A. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans. Inhal. Toxicol. 2006, 18, 717–724. [Google Scholar] [CrossRef]
- Cohen, J.M.; DeLoid, G.M.; Demokritou, P. A critical review of in vitro dosimetry for engineered nanomaterials. Nanomedicine 2015, 10, 3015–3032. [Google Scholar] [CrossRef]
- Sayes, C.M.; Marchione, A.A.; Reed, K.L.; Warheit, D.B. Comparative Pulmonary Toxicity Assessments of C60 Water Suspensions in Rats: Few Differences in Fullerene Toxicity in Vivo in Contrast to in Vitro Profiles. Nano Lett. 2007, 7, 2399–2406. [Google Scholar] [CrossRef]
- Sayes, C.M.; Reed, K.L.; Warheit, D.B. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 2007, 97, 163–180. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Weibel, E.R.; Cournand, A.F.; Richards, D.W. Morphometry of the Human Lung; Springer: Berlin/Heidelberg, Germany, 1963; Volume 1. [Google Scholar]
- Horsfield, K.; Cumming, G. Morphology of the bronchial tree in man. J. Appl. Physiol. 1968, 24, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Dong, J.; Tian, L.; Inthavong, K.; Tu, J. Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin. Biomech. 2019, 61, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-C.; Schum, G. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 1980, 42, 461–480. [Google Scholar] [CrossRef]
- Horsfield, K.; Cumming, G. Morphology of the bronchial tree in the dog. Respir. Physiol. 1976, 26, 173–182. [Google Scholar] [CrossRef]
- Raabe, O. Tracheobronchial Geometry-Human, Dog, Rat, Hamster; Report number LF-53; Lovelace Foundation for Medical Education and Research: Albuquerque, New Mexico, 1976. [Google Scholar]
- Yeh, H.; Schum, G.; Duggan, M. Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat. Rec. 1979, 195, 483–492. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Zhou, Y.; Chen, B.T. Particle deposition in a cast of human oral airways. Aerosol Sci. Technol. 1999, 31, 286–300. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, Y.-S. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci. Technol. 2005, 39, 492–500. [Google Scholar] [CrossRef]
- Nordlund, M.; Belka, M.; Kuczaj, A.K.; Lizal, F.; Jedelsky, J.; Elcner, J.; Jicha, M.; Sauser, Y.; Le Bouhellec, S.; Cosandey, S. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract. Inhal. Toxicol. 2017, 29, 113–125. [Google Scholar] [CrossRef]
- Stahlhofen, W.; Rudolf, G.; James, A. Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 1989, 2, 285–308. [Google Scholar] [CrossRef]
- Koblinger, L. Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys. Med. Biol. 1985, 30, 541. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W. Regional deposition: Deposition models. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W.; Winkler-Heil, R.; Balásházy, I. The effect of morphological variability on surface deposition densities of inhaled particles in human bronchial and acinar airways. Inhal. Toxicol. 2006, 18, 809–819. [Google Scholar] [CrossRef]
- Martonen, T.B.; Rosati, J.A.; Isaacs, K.K. Modeling deposition of inhaled particles. In Aerosols Handbook; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Mitsakou, C.; Helmis, C.; Housiadas, C. Eulerian modelling of lung deposition with sectional representation of aerosol dynamics. J. Aerosol Sci. 2005, 36, 75–94. [Google Scholar] [CrossRef]
- Rostami, A.A. Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review. Inhal. Toxicol. 2009, 21, 262–290. [Google Scholar] [CrossRef] [PubMed]
- Longest, P.W.; Holbrook, L.T. In silico models of aerosol delivery to the respiratory tract—Development and applications. Adv. Drug Deliv. Rev. 2012, 64, 296–311. [Google Scholar] [CrossRef]
- Rahimi-Gorji, M.; Gorji, T.B.; Gorji-Bandpy, M. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: Two-phase flow simulation. Comput. Biol. Med. 2016, 74, 1–17. [Google Scholar] [CrossRef]
- Kolanjiyil, A.V.; Kleinstreuer, C. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation. Comput. Biol. Med. 2016, 79, 193–204. [Google Scholar] [CrossRef]
- Lejon, C. Lung Deposition Models for Exposure and Risk Assessment. Available online: https://www.foi.se/rest-api/report/FOI-R--4753--SE (accessed on 5 April 2019).
- Oberdörster, G. Lung dosimetry: Pulmonary clearance of inhaled particles. Aerosol Sci. Technol. 1993, 18, 279–289. [Google Scholar] [CrossRef]
- Snipes, M.; Boecker, B.; McClellan, R. Retention of monodisperse or polydisperse aluminosilicate particles inhaled by dogs, rats, and mice. Toxicol. Appl. Pharmacol. 1983, 69, 345–362. [Google Scholar] [CrossRef]
- Anjilvel, S.; Asgharian, B. A multiple-path model of particle deposition in the rat lung. Toxicol. Sci. 1995, 28, 41–50. [Google Scholar] [CrossRef]
- Demokritou, P.; Gass, S.; Pyrgiotakis, G.; Cohen, J.M.; Goldsmith, W.; McKinney, W.; Frazer, D.; Ma, J.; Schwegler-Berry, D.; Brain, J. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology 2013, 7, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- ARA. Multiple-Path Particle Dosimetry Model (MPPD v 2.11). Available online: https://www.ara.com/products/multiple-path-particle-dosimetry-model-mppd-v-211 (accessed on 3 May 2022).
- Miller, F.J.; Asgharian, B.; Schroeter, J.D.; Price, O. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 2016, 99, 14–26. [Google Scholar] [CrossRef]
- Cassee, F.R.; Muijser, H.; Duistermaat, E.; Freijer, J.J.; Geerse, K.B.; Marijnissen, J.C.; Arts, J.H. Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch. Toxicol. 2002, 76, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Ling, M.-P.; Chio, C.-P.; Chou, W.-C.; Chen, W.-Y.; Hsieh, N.-H.; Lin, Y.-J.; Liao, C.-M. Assessing the potential exposure risk and control for airborne titanium dioxide and carbon black nanoparticles in the workplace. Environ. Sci. Pollut. Res. 2011, 18, 877–889. [Google Scholar] [CrossRef]
- Patterson, R.F.; Zhang, Q.; Zheng, M.; Zhu, Y. Particle deposition in respiratory tracts of school-aged children. Aerosol Air Qual. Res. 2014, 14, 64–73. [Google Scholar] [CrossRef]
- Ji, J.H.; Yu, I.J. Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicol. Res. 2012, 1, 206–210. [Google Scholar] [CrossRef]
- Chio, C.-P.; Liao, C.-M. Assessment of atmospheric ultrafine carbon particle-induced human health risk based on surface area dosimetry. Atmos. Environ. 2008, 42, 8575–8584. [Google Scholar] [CrossRef]
- Martins, L.D.; Martins, J.A.; Freitas, E.D.; Mazzoli, C.R.; Gonçalves, F.L.T.; Ynoue, R.Y.; Hallak, R.; Albuquerque, T.T.A.; Andrade, M.d.F. Potential health impact of ultrafine particles under clean and polluted urban atmospheric conditions: A model-based study. Air Qual. Atmos. Health 2010, 3, 29–39. [Google Scholar] [CrossRef]
- Asgharian, B. A model of deposition of hygroscopic particles in the human lung. Aerosol Sci. Technol. 2004, 38, 938–947. [Google Scholar] [CrossRef]
- Romeo, D.; Nowack, B.; Wick, P. Combined in vitro-in vivo dosimetry enables the extrapolation of in vitro doses to human exposure levels: A proof of concept based on a meta-analysis of in vitro and in vivo titanium dioxide toxicity data. NanoImpact 2022, 25, 100376. [Google Scholar] [CrossRef] [PubMed]
- Tsiros, P.; Cheimarios, N.; Tsoumanis, A.; Jensen, A.Ø.; Melagraki, G.; Lynch, I.; Sarimveis, H.; Afantitis, A. Towards an in silico integrated approach for testing and assessment of nanomaterials: From predicted indoor air concentrations to lung dose and biodistribution. Environ. Sci. Nano 2022, 9, 1282–1297. [Google Scholar] [CrossRef]
- Romeo, D.; Salieri, B.; Hischier, R.; Nowack, B.; Wick, P. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ. Int. 2020, 137, 105505. [Google Scholar] [CrossRef]
- Yao, W.; Gallagher, D.L.; Dietrich, A.M. Risks to children from inhalation of aerosolized aqueous manganese emitted from ultrasonic humidifiers can be greater than for corresponding ingestion. Water Res. 2021, 207, 117760. [Google Scholar] [CrossRef] [PubMed]
- Boecker, B.B. Comparison of old and new ICRP models for respiratory tract dosimetry. Radiat. Prot. Dosim. 1995, 60, 331–336. [Google Scholar] [CrossRef]
- Harley, N.; Fisenne, I.; Robbins, E. Attempted validation of ICRP 30 and ICRP 66 respiratory models. Radiat. Prot. Dosim. 2012, 152, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Hammer, T.; Fissan, H.; Wang, J. Determination of the delivered dose of nanoparticles in the trachea-bronchial and alveolar regions of the lung. NanoImpact 2019, 14, 100162. [Google Scholar] [CrossRef]
- Chang, I.; Griffith, W.; Shyr, L.; Yeh, H.; Cuddihy, R.; Seiler, F. Software for the draft NCRP respiratory tract dosimetry model. Radiat. Prot. Dosim. 1991, 38, 193–199. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Cuddihy, R.G.; Phalen, R.F.; Chang, I.-Y. Comparisons of calculated respiratory tract deposition of particles based on the proposed NCRP model and the new ICRP66 model. Aerosol Sci. Technol. 1996, 25, 134–140. [Google Scholar] [CrossRef]
- Hoover, D. An Overview of National Council on Radiation Protection and Measurements Report No. 176 on Radiation Safety Aspects of Nanotechnology. Available online: https://orau.org/ihos/downloads/tech-topics/workersafety/2017/Hoover_2017-08-29pt1.pdf (accessed on 27 May 2022).
- Aleksandropoulou, V.; Lazaridis, M. Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions. Air Qual. Atmos. Health 2013, 6, 13–26. [Google Scholar] [CrossRef]
- Chalvatzaki, E.; Aleksandropoulou, V.; Lazaridis, M. A case study of landfill workers exposure and dose to particulate matter-bound metals. Water Air Soil Pollut. 2014, 225, 1–19. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Walia, A.; Roy, A.; Lioy, P.J. Integrated Exposure and Dose Modeling and Analysis System. 1. Formulation and Testing of Microenvironmental and Pharmacokinetic Components. Environ. Sci. Technol. 1997, 31, 17–27. [Google Scholar] [CrossRef]
- Lazaridis, M.; Broday, D.M.; Hov, Ø.; Georgopoulos, P.G. Integrated exposure and dose modeling and analysis system. 3. Deposition of inhaled particles in the human respiratory tract. Environ. Sci. Technol. 2001, 35, 3727–3734. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Longest, P.W.; Su, G.; Walenga, R.L.; Hindle, M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: Effects of transient inhalation and sampling the airways. J. Aerosol Sci. 2011, 42, 781–799. [Google Scholar] [CrossRef]
- Inthavong, K.; Choi, L.-T.; Tu, J.; Ding, S.; Thien, F. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med. Eng. Phys. 2010, 32, 1198–1212. [Google Scholar] [CrossRef] [PubMed]
- Longest, P.W.; Tian, G.; Khajeh-Hosseini-Dalasm, N.; Hindle, M. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 461–481. [Google Scholar] [CrossRef]
- Inthavong, K.; Tu, J.; Ye, Y.; Ding, S.; Subic, A.; Thien, F. Effects of airway obstruction induced by asthma attack on particle deposition. J. Aerosol Sci. 2010, 41, 587–601. [Google Scholar] [CrossRef]
- Tian, G.; Hindle, M.; Lee, S.; Longest, P.W. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data. Pharm. Res. 2015, 32, 3170–3187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utembe, W.; Sanabria, N. Lung Dosimetry Modelling in Nanotoxicology: A Critical Analysis of the State of the Art. Environ. Sci. Proc. 2022, 19, 2. https://doi.org/10.3390/ecas2022-12801
Utembe W, Sanabria N. Lung Dosimetry Modelling in Nanotoxicology: A Critical Analysis of the State of the Art. Environmental Sciences Proceedings. 2022; 19(1):2. https://doi.org/10.3390/ecas2022-12801
Chicago/Turabian StyleUtembe, Wells, and Natasha Sanabria. 2022. "Lung Dosimetry Modelling in Nanotoxicology: A Critical Analysis of the State of the Art" Environmental Sciences Proceedings 19, no. 1: 2. https://doi.org/10.3390/ecas2022-12801
APA StyleUtembe, W., & Sanabria, N. (2022). Lung Dosimetry Modelling in Nanotoxicology: A Critical Analysis of the State of the Art. Environmental Sciences Proceedings, 19(1), 2. https://doi.org/10.3390/ecas2022-12801