Performance of a Simple Mobile Source Dispersion Model Using Three-Phase Turbulence Model †
Abstract
:1. Introduction
2. Three Phase Turbulence Model (TPT)
2.1. Initial Phase
2.2. Transition Phase
2.3. Dispersion Phase
3. Basic Model
4. Performance Evaluation
4.1. Data
- (a)
- Data 1: The CALTRANS highway 99 Tracer experiment was conducted in the 1980s in California near Highway 99 to measure SF6 (Sulfur hexafluoride). Approximately 35,000 vehicles were observed in traffic daily [15]. The concentrations of SF6 are measured at 0 m, 32.14 m, 64.28 m, and 128.56 m downwind distance in the North and South directions. The wind speed ranges are observed to be 0.2 m/s–6 m/s [16].
- (b)
- Data 2: Idaho Falls Tracer experiment was conducted to measure SF6 in 2008 at Idaho Falls, a city in Idaho. The SF6 is measured in this field experiment for 18 m, 36 m, 48 m, 66 m, 90 m, 120 m, and 180 m downwind distances. The source is modeled with a unit emission rate because the measured emission rates are slightly different for each day. The emission rates for day 1, 2, 3, and 5 are 0.05 g/s, 0.04 g/s, 0.03 g/s, and 0.03 g/s respectively [17].
- (c)
4.2. Evaluation Tool
4.3. Performance Measures
4.4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US EPA, Air Quality Dispersion Modeling—Screening Models. Available online: https://www.epa.gov/scram/air-quality-dispersion-modeling-screening-models (accessed on 15 June 2022).
- Leelőssy, Á.; Molnár, F.; Izsák, F.; Havasi, Á.; Lagzi, I.; Mészáros, R. Dispersion Modeling of Air Pollutants in the Atmosphere: A Review. Open Geosci. 2014, 6, 257–278. [Google Scholar] [CrossRef]
- Sharma, N.; Chaudhry, K.; Rao, C. Air Pollution Dispersion Studies through Environmental Wind Tunnel (EWT) Investigations: A Review. J. Sci. Ind. Res. 2005, 64, 549–559. [Google Scholar]
- Encyclopedia of Physical Science and Technology | ScienceDirect. Available online: https://www.sciencedirect.com/referencework/9780122274107/encyclopedia-of-physical-science-and-technology (accessed on 15 June 2022).
- Nieuwstadt, F.T.; Van Dop, H. Atmospheric Turbulence and Air Pollution Modelling: A Course Held in The Hague, 21–25 September, 1981; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 1, ISBN 94-010-9112-9. [Google Scholar]
- Gifford, F. Atmospheric Dispersion Models for Environmental Pollution Applications. In Lectures on Air Pollution and Environmental Impact Analyses; American Meteorological Society: Boston, MA, USA, 1982; pp. 35–58. [Google Scholar]
- Madiraju, S.V.H.; Kumar, A. Development and Evaluation of SLINE 1.0, a Line Source Dispersion Model for Gaseous Pollutants by Incorporating Wind Shear Near the Ground under Stable and Unstable Atmospheric Conditions. Atmosphere 2021, 12, 618. [Google Scholar] [CrossRef]
- Madiraju, S.V.H.; Kumar, A. Examination of the Performance of a Three-Phase Atmospheric Turbulence Model for Line-Source Dispersion Modeling Using Multiple Air Quality Datasets. J 2022, 5, 198–213. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, C.-H. Wind Tunnel Measurements of Pollutant Plume Dispersion over Hypothetical Urban Areas. Build. Environ. 2018, 132, 357–366. [Google Scholar] [CrossRef]
- Chock, D.P. A Simple Line-Source Model for Dispersion near Roadways. Atmos. Environ. (1967) 1978, 12, 823–829. [Google Scholar] [CrossRef]
- Benson, P.E. Modifications to the Gaussian Vertical Dispersion Parameter, Σz, near Roadways. Atmos. Environ. (1967) 1982, 16, 1399–1405. [Google Scholar] [CrossRef]
- Yu, Y.T.; Xiang, S.; Noll, K.E. Evaluation of the Relationship between Momentum Wakes behind Moving Vehicles and Dispersion of Vehicle Emissions Using Near-Roadway Measurements. Environ. Sci. Technol. 2020, 54, 10483–10492. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-T. Parameterization of Vertical Dispersion Coefficient (σ z) near Roadway: Vehicle Wake, Density and Types. Ph.D. Thesis, Illinois Institute of Technology, Chicago, IL, USA, 2020. [Google Scholar]
- Wark, K.; Warner, C.F. Air Pollution: Its Origin and Control; Addison-Wesley: New York, NY, USA, 1981; ISBN 0-673-99416-3. [Google Scholar]
- Heist, D.; Isakov, V.; Perry, S.; Snyder, M.; Venkatram, A.; Hood, C.; Stocker, J.; Carruthers, D.; Arunachalam, S.; Owen, R.C. Estimating Near-Road Pollutant Dispersion: A Model Inter-Comparison. Transp. Res. Part D Transp. Environ. 2013, 25, 93–105. [Google Scholar] [CrossRef]
- Benson, P.E. Caline 4-A Dispersion Model for Predictiong Air Pollutant Concentrations Near Roadways; Federal Highway Administration Report FHWA/CA/TL-84/15; NTIS PB 85 211498/AS; California State Department of Transportation: Sacramento, CA, USA, 1984.
- Finn, D.; Clawson, K.L.; Carter, R.G.; Rich, J.D.; Eckman, R.M.; Perry, S.G.; Isakov, V.; Heist, D.K. Tracer Studies to Characterize the Effects of Roadside Noise Barriers on Near-Road Pollutant Dispersion under Varying Atmospheric Stability Conditions. Atmos. Environ. 2010, 44, 204–214. [Google Scholar] [CrossRef]
- Baldauf, R.; Thoma, E.; Hays, M.; Shores, R.; Kinsey, J.; Gullett, B.; Kimbrough, S.; Isakov, V.; Long, T.; Snow, R.; et al. Traffic and Meteorological Impacts on Near-Road Air Quality: Summary of Methods and Trends from the Raleigh Near-Road Study. J. Air Waste Manag. Assoc. 2008, 58, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Venkatram, A.; Isakov, V.; Thoma, E.; Baldauf, R. Analysis of Air Quality Data near Roadways Using a Dispersion Model. Atmos. Environ. 2007, 41, 9481–9497. [Google Scholar] [CrossRef]
- Chang, J.C.; Hanna, S.R. Technical Descriptions and User’s Guide for the BOOT Statistical Model Evaluation Software Package, Version 2.0; George Mason University and Harvard School of Public Health: Fairfax, VA, USA, 2005. [Google Scholar]
- Rao, S.T.; Sistla, G.; Eskridge, R.E.; Petersen, W.B. Turbulent Diffusion behind Vehicles: Evaluation of ROADWAY Models. Atmos. Environ. (1967) 1986, 20, 1095–1103. [Google Scholar] [CrossRef]
- Riswadkar, R.M.; Kumar, A. Evaluation of the Industrial Source Complex Short-Term Model in a Large-Scale Multiple Source Region for Different Stability Classes. Environ. Monit. Assess. 1994, 33, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Gudivaka, V.; Kumar, A. An Evaluation of Four Box Models for Instantaneous Dense-Gas Releases. J. Hazard. Mater. 1990, 25, 237–255. [Google Scholar] [CrossRef]
- Patel, V.C.; Kumar, A. Evaluation of Three Air Dispersion Models: ISCST2, ISCLT2, and SCREEN2 for Mercury Emissions in an Urban Area. Environ. Monit. Assess. 1998, 53, 259–277. [Google Scholar] [CrossRef]
- Kumar, A.; Bellam, N.K.; Sud, A. Performance of an Industrial Source Complex Model: Predicting Long-term Concentrations in an Urban Area. Environ. Prog. 1999, 18, 93–100. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 2014; ISBN 0-08-057065-8. [Google Scholar]
- Chang, J.C. Methodologies for Evaluating Performance and Assessing Uncertainty of Atmospheric Dispersion Models; George Mason University: Fairfax, VA, USA, 2003; ISBN 0-493-88223-5. [Google Scholar]
- Asuero, A.G.; Sayago, A.; González, A. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
- Bluett, J. A Comparison of Near Field Concentrations Predicted by AUSPLUME and CALPUFF. Clean Air Environ. Qual. 2000, 34, 27–32. [Google Scholar]
Data 1_Stable | Data 1_Unstable | Data 2_Stable | Data 2_Unstable | Data 3_Stable | Data 3_Unstable | |
---|---|---|---|---|---|---|
Mean | 1.5 × 1005 | 1.7 × 1005 | 1.3 × 1005 | 3.4 × 1004 | 4.3 × 1005 | 5.0 × 1005 |
Standard Error | 2.4 × 1004 | 2.2 × 1004 | 7.8 × 1003 | 2.5 × 1003 | 1.3 × 1004 | 1.3 × 1004 |
Median | 5.1 × 1004 | 6.0 × 1004 | 1.1 × 1005 | 2.7 × 1004 | 3.7 × 1005 | 3.9 × 1005 |
Mode | #N/A | #N/A | 5.8 × 1004 | 1.8 × 1004 | #N/A | #N/A |
Standard Deviation | 2.9 × 1005 | 3.5 × 1005 | 8.0 × 1004 | 2.7 × 1004 | 2.7 × 1005 | 3.6 × 1005 |
Sample Variance | 8.6 × 1010 | 1.2 × 1011 | 6.3 × 1009 | 7.1 × 1008 | 7.4 × 1010 | 1.3 × 1011 |
Kurtosis | 3.0 × 1001 | 2.2 × 1001 | 1.7 × 10−01 | 3.3 × 1000 | 4.0 × 1000 | 1.9 × 1000 |
Skewness | 4.9 × 1000 | 4.4 × 1000 | 9.5 × 10−01 | 1.7 × 1000 | 1.7 × 1000 | 1.4 × 1000 |
Range | 2.3 × 1006 | 2.5 × 1006 | 3.2 × 1005 | 1.3 × 1005 | 1.8 × 1006 | 2.0 × 1006 |
Minimum | 4.2 × 1002 | 7.7 × 1002 | 3.0 × 1004 | 3.4 × 1003 | 8.1 × 1004 | 4.1 × 1004 |
Maximum | 2.3 × 1006 | 2.5 × 1006 | 3.5 × 1005 | 1.3 × 1005 | 1.9 × 1006 | 2.0 × 1006 |
Sum | 2.3 × 1007 | 4.0 × 1007 | 1.4 × 1007 | 3.8 × 1006 | 2.0 × 1008 | 3.9 × 1008 |
Count | 1.5 × 1002 | 2.4 × 1002 | 1.1 × 1002 | 1.1 × 1002 | 4.8 × 1002 | 7.7 × 1002 |
Largest (1) | 2.3 × 1006 | 2.5 × 1006 | 3.5 × 1005 | 1.3 × 1005 | 1.9 × 1006 | 2.0 × 1006 |
Smallest (1) | 4.2 × 1002 | 7.7 × 1002 | 3.0 × 1004 | 3.4 × 1003 | 8.1 × 1004 | 4.1 × 1004 |
Confidence Level (95.0%) | 4.7 × 1004 | 4.4 × 1004 | 1.5 × 1004 | 5.0 × 1003 | 2.5 × 1004 | 2.5 × 1004 |
Performance Measure | Ideal
Value | Range of Values That Indicate the Model Is Performing Satisfactorily (Better Performing) to Predict the Ground Level Concentrations of Pollutants [22,23,24,25] |
---|---|---|
FB | 0 | −0.5 ≤ FB ≤ +0.5 |
NMSE | 0 | Smaller values of NMSE denote better model performance |
FA2 | 1 | 0.80 ≤ FA2 |
r | 1 | Close to unity implies good model performance |
Model | MEAN | SIGMA | BIAS | NMSE | r | FA2 | FB | HIGH | 2nd HIGH | FBfn | FBfp | MOEfn | MOEfp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MODEL A | |||||||||||||
Data 1a | 1.9 × 1005 | 2.5 × 1005 | 12.36 | 0.35 | 0.73 | 0.79 | −0.261 | 2.0 × 1006 | 1.8 × 1006 | 0.195 | 0.456 | 0.875 | 0.614 |
Data 1b | 1.8 × 1005 | 1.2 × 1004 | 14.33 | 0.47 | 0.72 | 0.81 | −0.285 | 2.1 × 1006 | 1.9 × 1006 | 0.398 | 0.683 | 0.762 | 0.477 |
Data 2a | 1.7 × 1004 | 1.1 × 1004 | 9.52 | 0.11 | 0.69 | 0.73 | −0.265 | 3.5 × 1005 | 3.0 × 1005 | 0.182 | 0.447 | 0.848 | 0.583 |
Data 2b | 1.2 × 1004 | 1.0 × 1004 | 11.98 | 0.11 | 0.74 | 0.76 | −0.266 | 1.7 × 1005 | 1.5 × 1005 | 0.489 | 0.755 | 0.661 | 0.395 |
Data 3a | 3.0 × 1005 | 2.0 × 1004 | 10.13 | 0.17 | 0.58 | 0.79 | −0.334 | 1.6 × 1006 | 1.1 × 1006 | 0.357 | 0.691 | 0.713 | 0.379 |
Data 3b | 4.4 × 1005 | 1.4 × 1005 | 20.11 | 0.11 | 0.66 | 0.74 | −0.257 | 2.0 × 1006 | 1.5 × 1006 | 0.417 | 0.674 | 0.613 | 0.356 |
MODEL B | |||||||||||||
Data 1a | 2.8 × 1005 | 6.3 × 1004 | 7.69 | 0.26 | 0.78 | 0.82 | −0.179 | 2.5 × 1006 | 1.9 × 1006 | 0.197 | 0.376 | 0.973 | 0.794 |
Data 1b | 2.5 × 1005 | 4.2 × 1004 | 6.78 | 0.34 | 0.77 | 0.88 | −0.198 | 2.1 × 1006 | 1.7 × 1006 | 0.674 | 0.872 | 0.496 | 0.298 |
Data 2a | 3.3 × 1004 | 2.4 × 1004 | 8.22 | 0.1 | 0.73 | 0.78 | −0.17 | 3.3 × 1005 | 3.1 × 1005 | 0.317 | 0.487 | 0.853 | 0.683 |
Data 2b | 2.7 × 1004 | 1.1 × 1004 | 11.2 | 0.09 | 0.8 | 0.81 | −0.172 | 1.1 × 1005 | 1.1 × 1005 | 0.337 | 0.509 | 0.833 | 0.661 |
Data 3a | 3.1 × 1005 | 1.4 × 1005 | 5.67 | 0.13 | 0.67 | 0.79 | −0.221 | 1.3 × 1006 | 1.2 × 1006 | 0.277 | 0.498 | 0.763 | 0.542 |
Data 3b | 4.6 × 1005 | 4.5 × 1004 | 15.35 | 0.09 | 0.71 | 0.76 | −0.147 | 1.5 × 1006 | 1.2 × 1006 | 0.355 | 0.502 | 0.655 | 0.508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madiraju, S.V.H.; Kumar, A. Performance of a Simple Mobile Source Dispersion Model Using Three-Phase Turbulence Model. Environ. Sci. Proc. 2022, 19, 33. https://doi.org/10.3390/ecas2022-12847
Madiraju SVH, Kumar A. Performance of a Simple Mobile Source Dispersion Model Using Three-Phase Turbulence Model. Environmental Sciences Proceedings. 2022; 19(1):33. https://doi.org/10.3390/ecas2022-12847
Chicago/Turabian StyleMadiraju, Saisantosh Vamshi Harsha, and Ashok Kumar. 2022. "Performance of a Simple Mobile Source Dispersion Model Using Three-Phase Turbulence Model" Environmental Sciences Proceedings 19, no. 1: 33. https://doi.org/10.3390/ecas2022-12847
APA StyleMadiraju, S. V. H., & Kumar, A. (2022). Performance of a Simple Mobile Source Dispersion Model Using Three-Phase Turbulence Model. Environmental Sciences Proceedings, 19(1), 33. https://doi.org/10.3390/ecas2022-12847