Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques †
Abstract
:1. Introduction
2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Zhu, F.R.; Jia, H.Y. Lomb–Scargle periodogram analysis of the periods around 5.5 year and 11 year in the international sunspot numbers. Astrophys. Space Sci. 2018, 363, 138. [Google Scholar] [CrossRef]
- Akdi, Y.; Ünlü, K.D. Periodicity in precipitation and temperature for monthly data of Turkey. Theor. Appl. Climatol. 2021, 143, 957–968. [Google Scholar] [CrossRef]
- Álvarez Aldegunde, J.A.; Fernández-Sánchez, A.; Saba, M.; Bolaños, E.Q.; Úbeda Palenque, J. Analysis of PM 2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries: A Case Study of Cartagena de Indias City (Colombia). Atmosphere 2022, 13, 506. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Röhl, U.; Wefer, G. Holocene rainfall variability in Southern Chile: A marine record of latitudinal shifts of the Southern Westerlies. Earth Planet. Sci. Lett. 2001, 185, 369–382. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Martín-Chivelet, J. Revisión de la estratigrafía del δ18O en sondeos de hielo de glaciares de los Andes Centrales: Implicaciones para la variabilidad climática del Holoceno. Dialnet 2016, 4, 565–568. [Google Scholar]
- SENAMHI. Escenarios Del Cambio Climático en el Perú al 2050: Cuenca del Río Piura; SENAMHI: Lima, Peru, 2005. [Google Scholar]
- Fernández-Sánchez, A.; Úbeda, J.; Tanarro-Garcia, L.M.; Bonshoms, M.; Vidaller, I.; Naranjo-Fernández, N. The Climate of Cordillera Blanca (Perú), 1986–2019, according to available meteorological records from 1986 to 2019 years. [email protected]. Geography Department, Complutense University of Madrid, Madrid, Spain. 2022, manuscript to be submitted.
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleaeontologia Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 17 February 2022).
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- NOAA. Cold & Warm Episodes by ONI Season. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 20 February 2022).
- Huang, X.; Zhou, T.; Dai, A.; Li, H.; Li, C.; Chen, X.; Lu, J.; von Storch, J.S.; Wu, B. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Sci. Adv. 2020, 6, eaay6546. [Google Scholar] [CrossRef]
- Marrari, M.; Piola, A.R.; Valla, D. Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western central America. Front. Mar. Sci. 2017, 4, 372. [Google Scholar] [CrossRef]
- Coddington, O.; Lean, J.L.; Pilewskie, P.; Snow, M.; Lindholm, D. A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 2016, 97, 1265–1282. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Durán-Quesada, A.M.; Amador, J.A.; Alfaro, E.J. Connections between the Intertropical Convergence Zone and other climatic features in Central America. In Proceedings of the AGU 2013 Meeting of the Americas, Cancun, Mexico, 19–23 May 2013; p. 4. [Google Scholar]
- Reason, C.J.C. The Bolivian, Botswana, and Bilybara Highs and Southern Hemisphere drought/floods. Geophys. Res. Lett. 2016, 43, 1280–1286. [Google Scholar] [CrossRef]
- Jones, C. Recent changes in the South America low-level jet. Clim. Atmos. Sci. 2019, 2, 20. [Google Scholar] [CrossRef]
- Sierra, J.P.; Arias, P.A.; Durán-Quesada, A.M.; Tapias, K.A.; Vieira, S.C.; Martínez, J.A. The Choco low-level jet: Past, present and future. Clim. Dyn. 2021, 56, 2667–2692. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Durán-Quesada, A.M.; Amador, J.A.; Alfaro, E.J. The caribbean low-level jet, the inter-tropical convergence zone and precipitation patterns in the intra-Americas Sea: A proposed dynamical mechanism. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 41–59. [Google Scholar] [CrossRef]
- Xue, Y.; Higgins, W.; Kousky, V. Influences of the Madden Julian Oscillations on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. In Proceedings of the Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal (2 Week to 2 Month) Time Scales. NASA/Goddard space flight center, Goddard, Greenbelt, MA, USA, 14–16 April 2022; pp. 1–4. [Google Scholar]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef]
- Ilyés, C.; Wendo, V.A.J.A.; Carpio, Y.F.; Szűcs, P. Differences and similarities between precipitation patterns of different climates. Acta Geod. Geophys. 2021, 56, 781–800. [Google Scholar] [CrossRef]
- Herho, S.H.S.; Fajary, F.R.; Irawan, D.E. On the statistical learning analysis of rain gauge data over the Natuna Islands Sandy. Eartharxiv 2021, 1, 7. [Google Scholar] [CrossRef]
- Jones, C.; Carvalho, L.M.V. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Clim. Atmos. Sci. 2018, 1, 40. [Google Scholar] [CrossRef]
- Montini, T.L.; Jones, C.; Carvalho, L.M.V. The South American Low-Level Jet: A New Climatology, Variability, and Changes. J. Geophys. Res. Atmos. 2019, 124, 1200–1218. [Google Scholar] [CrossRef]
- Rowe, A.K.; Houze, R.A. Cloud organization and growth during the transition from suppressed to active MJO conditions. J. Geophys. Res. 2015, 120, 10324–10350. [Google Scholar] [CrossRef]
- Alvarez, M.S.; Vera, C.S.; Kiladis, G.N. MJO modulating the activity of the leading mode of intraseasonal variability in South America. Atmosphere 2017, 8, 232. [Google Scholar] [CrossRef]
- Miyahara, H.; Aono, Y.; Kataoka, R. Searching for the 27-day solar rotational cycle in lightning events recorded in old diaries in Kyoto from the 17th to 18th century. Ann. Geophys. 2017, 35, 1195–1200. [Google Scholar] [CrossRef]
- Lu, B.; Jin, F.F.; Ren, H.L. A Coupled Dynamic Index for ENSO Periodicity. J. Clim. 2018, 31, 2361–2376. [Google Scholar] [CrossRef]
- Canedo-Rosso, C.; Uvo, C.; Brendtsson, R. Intl Journal of Climatology—2018—Canedo-Rosso—Precipitation variability and its relation to climate anomalies in the.pdf. Int. J. Climatol. 2018, 39, 2096–2107. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A.; Pietrella, M. On the influence of solar activity on the mid-latitude sporadic E layer. J. Sp. Weather Sp. Clim. 2015, 5, A31. [Google Scholar] [CrossRef]
- Feliks, Y.; Small, J.; Ghil, M. Global oscillatory modes in high-end climate modeling and reanalyses. Clim. Dyn. 2021, 57, 3385–3411. [Google Scholar] [CrossRef]
- Lin, Y.F.; Yu, J.Y.; Wu, C.R.; Zheng, F. The Footprint of the 11-Year Solar Cycle in Northeastern Pacific SSTs and Its Influence on the Central Pacific El Niño. Geophys. Res. Lett. 2021, 48, e2020GL091369. [Google Scholar] [CrossRef]
- Zhang, L.; Delworth, T.L. Simulated response of the pacific decadal oscillation to climate change. J. Clim. 2016, 29, 5999–6018. [Google Scholar] [CrossRef]
Meteorological Stations | Chosen Period | Variable | Altitude (m.a.s.l) |
---|---|---|---|
Aija | 1999–2019 | P., Max. T, Min.T. | 3478 |
Cachicadan | 1986–2019 | P., Max. T, Min.T. | 2885 |
Cajamarca | 1986–2019 | P., Max. T, Min.T. | 2686 |
Cajatambo | 1990–2019 | P., Max. T, Min.T. | 3405 |
Casapalca | 1987–2019 | Precipitation | 4924 |
Carhuaz | 1986–2016 | P., Max. T, Min.T. | 2644 |
Chavín | 2000–2019 | P., Max. T, Min.T. | 3132 |
Chiquián | 1986–2019 | P., Max. T, Min.T. | 3412 |
Dos de Mayo | 2000–2019 | P., Max. T, Min.T. | 3474 |
Huamachuco | 1986–2019 | P., Max. T, Min.T. | 3178 |
Huánuco | 1986–2019 | P., Max. T, Min.T. | 1918 |
Matucana | 1986–2019 | P., Max. T, Min.T. | 2417 |
Oyón | 1986–2019 | P., Max. T, Min.T. | 3663 |
Pomabamba | 1989–2019 | P., Max. T, Min.T. | 2975 |
A. Weberbahuer | 1986–2019 | P., Max. T, Min.T. | 2666 |
Huaraz | 1998–2019 | P., Max. T, Min.T. | 3071 |
Recuay | 1986–2019 | P., Max. T, Min.T. | 3417 |
Index | Region | Period |
---|---|---|
ONI Index (ENSO) [11] | Equatorial Pacific | 1950–2021 |
SST Index [12] | El Niño 1+2 | 1982–2021 |
Humboldt Current [13] | 7–9° S latitude | 1997–2017 |
Sun radiation [14] | Global | 1978–2019 |
ITCZ displacement [15] | 90–60° W longitude | 1979–2005 |
Bolivian High [16] | Bolivia | 1979–2014 |
SALLJ [17] | Eastern Andes | 1979–2018 |
Chocó LLJ [18] | Colombia North | 1978–2010 |
Caribbean LLJ [19] | Caribbean Sea | 1979–2010 |
MJO Index [20] | 40° W longitude | 1979–2021 |
Variable | Intraseasonal | Intraseasonal | Intraseasonal | Interseasonal | Interseasonal | Annual |
---|---|---|---|---|---|---|
Maximum T. | 27–30 days | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Minimum T. | 27–30 days | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Precipitation | No period | 46–52 days | 90 days | 122 days | 182 days | 365 days |
Variable | Interannual | Interannual | Interannual | Interannual | Interannual | Interannual | Interdec. | Interdec. |
---|---|---|---|---|---|---|---|---|
Maximum T. | 1 yr 3 m. | 1 yr 6 m. | 1 yr 9 m. | 3 yr | 4 yr 6 m | 5.6–7 yr | 11–12 yr | 14–18 yr |
Minimum T. | 1 yr 3 m. | 1 yr 6 m. | 1 yr 9 m. | 3 yr | 4 yr 6 m | 5.6–7 yr | 11–12 yr | No period |
Precipitation | No period | 1 yr 3 m. | 1 yr 9 m. | No period | No period | 5.6–7 yr | 11–12 yr | 14–18 yr |
Index | Annual | Interannual | Interannual | Interannual | Interdecadal |
---|---|---|---|---|---|
ONI Index | 1 yr | 1 yr 5 m | 3 yr 3 m. | 4.7–5.5 yr | 11 yr 10 m |
SST Index | 1 yr | NP | NP | 4 yr | NP |
Humboldt Curr. | 1 yr 1 m | 2 yr 3 m | NP | 4 yr 6 m. | NP |
ITCZ displ. | NP | NP | 3 yr | NP | NP |
SALLJ | 1 yr 2 m | 2 yr 7 m | NP | 5 yr 6 m | 9 yr 3 m |
MJO Index | NP | NP | NP | NP | NP |
ENSO | 1 year | NP | NP | 4.7–5 y | 11 years |
Index | Interseasonal | Interseasonal | Interseasonal | Interseasonal | Interseasonal | Interseasonal |
---|---|---|---|---|---|---|
ONI Index | NP | NP | NP | NP | NP | NP |
SST Index | NP | NP | NP | NP | NP | NP |
Humboldt Curr. | NP | NP | NP | NP | 6 m | 10 m |
ITCZ displ. | NP | NP | NP | NP | NP | NP |
SALLJ | 25 days | NP | NP | NP | 4.7 m | 9 m |
MJO Index | 21 days | 36 days | 1.5 m | 2.5 m | 3 m | NP |
ENSO | NP | NP | NP | NP | NP | NP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Sánchez, A.; Palenque, J.Ú.; García, L.M.T.; Fernández, N.N.; Aldegunde, J.A.Á.; Chancafé, J. Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques. Environ. Sci. Proc. 2022, 19, 38. https://doi.org/10.3390/ecas2022-12831
Fernández-Sánchez A, Palenque JÚ, García LMT, Fernández NN, Aldegunde JAÁ, Chancafé J. Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques. Environmental Sciences Proceedings. 2022; 19(1):38. https://doi.org/10.3390/ecas2022-12831
Chicago/Turabian StyleFernández-Sánchez, Adrián, Jose Úbeda Palenque, Luis Miguel Tanarro García, Nuria Naranjo Fernández, José Antonio Álvarez Aldegunde, and Johan Chancafé. 2022. "Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques" Environmental Sciences Proceedings 19, no. 1: 38. https://doi.org/10.3390/ecas2022-12831
APA StyleFernández-Sánchez, A., Palenque, J. Ú., García, L. M. T., Fernández, N. N., Aldegunde, J. A. Á., & Chancafé, J. (2022). Climate Forcings and Their Influence in the Cordillera Blanca, Perú, Deduced from Spectral Analysis Techniques. Environmental Sciences Proceedings, 19(1), 38. https://doi.org/10.3390/ecas2022-12831