Usefulness of UAV-Mounted Multi-Sensors System for In Situ Atmospheric Measurement: A Case Study from Wrocław, Poland †
Abstract
:1. Introduction
2. Data and Methods
2.1. Design of the Hexacopter-Based Measuring System
2.2. Field Companies
2.2.1. Horizontal Measurements
2.2.2. Vertical Measurements
3. Examples Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Brauer, M.; Brook, J.R.; Christidis, T.; Chu, Y.; Crouse, D.L.; Erickson, A.; Hystad, P.; Li, C.; Martin, R.V.; Meng, J.; et al. Mortality–Air Pollution Associations in Low-Exposure Environments (MAPLE), Phase 1. Res. Rep. Health Eff. Inst. 2019, 2019, 203. [Google Scholar]
- Tian, Y.; Liu, H.; Wu, Y.; Si, Y.; Song, J.; Cao, Y.; Li, M.; Wu, Y.; Wang, X.; Chen, L.; et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: Time series study in 184 major Chinese cities. BMJ 2019, 367, l6572. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Schwartz, J.; Di, Q.; Braun, D.; Choirat, C.; Zanobetti, A. Assessing Adverse Health Effects of Long-Term Exposure to Low Levels of Ambient Air Pollution: Phase 1. Res. Rep. Health Eff. Inst. 2019, 2019, 200. [Google Scholar]
- Wolf, K.; Hoffmann, B.; Andersen, Z.J.; Atkinson, R.W.; Bauwelinck, M.; Bellander, T.; Brandt, J.; Brunekreef, B.; Cesaroni, G.; Chen, J.; et al. Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: A pooled analysis of six European cohorts within the ELAPSE project. Lancet Planet. Health 2021, 5, e620–e632. [Google Scholar] [CrossRef]
- Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Van Der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. 2015, 15, 8217–8299. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q.; et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ. Sci. Technol. 2014, 48, 13834–13843. [Google Scholar] [CrossRef] [PubMed]
- UNEP-CCAC. Time to Act to Reduce Short-Lived Climate Pollutants; UNEP-CCAC: Paris, France, 2014; ISBN 978-82-7701-130-1. [Google Scholar]
- Stull, R.B. Mean boundary layer characteristics. In An Introduction to Boundary Layer Meteorology; Kluwer, Academic Publishes: Dordrecht, The Netherlands, 1988; pp. 1–26. [Google Scholar]
- Aurell, J.; Gullett, B.K. Emission factors from aerial and ground measurements of field and laboratory forest burns in the southeastern US: PM2.5, black and brown carbon, VOC, and PCDD/PCDF. Environ. Sci. Technol. 2013, 47, 8443–8452. [Google Scholar] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Wardencki, W.; Katulski, R.J.; Stefański, J.; Namieśnik, J. The State of the Art in the Field of Non-Stationary Instruments for the Determination and Monitoring of Atmospheric Pollutants. Crit. Rev. Anal. Chem. 2008, 38, 259–268. [Google Scholar] [CrossRef]
- Dang, R.; Yang, Y.; Hu, X.M.; Wang, Z.; Zhang, S. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data. Remote Sens. 2019, 11, 1590. [Google Scholar] [CrossRef]
- Buzdugan, L.; Stefan, S. A comparative study of sodar, lidar wind measurements and aircraft derived wind observations. Rom. J. Phys. 2020, 65, 15. [Google Scholar]
- Lambey, V.; Prasad, A.D. A review on air quality measurement using an unmanned aerial vehicle. Water Air Soil Pollut. 2021, 232, 1–32. [Google Scholar] [CrossRef]
- Alvear, O.; Calafate, C.T.; Hernández, E.; Cano, J.-C.; Manzoni, P. Mobile pollution data sensing using UAVs. In Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia, Brussels, Belgium, 11–13 December 2015; pp. 393–397. [Google Scholar]
- Chang, C.C.; Chang, C.Y.; Wang, J.L.; Pan, X.X.; Chen, Y.C.; Ho, Y.J. An optimized multicopter UAV sounding technique (MUST) for probing comprehensive atmospheric variables. Chemosphere 2020, 254, 126867. [Google Scholar] [CrossRef] [PubMed]
- Madokoro, H.; Kiguchi, O.; Nagayoshi, T.; Chiba, T.; Inoue, M.; Chiyonobu, S.; Nix, S.; Woo, H.; Sato, K. Development of Drone-Mounted Multiple Sensing System with Advanced Mobility for In Situ Atmospheric Measurement: A Case Study Focusing on PM2.5 Local Distribution. Sensors 2021, 21, 4881. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Air Quality in Europe—2019 Report. In EEA; European Environment Agency: Copenhagen, Denmark, 2019; p. 99. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 1 June 2022).
- Kral, S.T.; Reuder, J.; Vihma, T.; Suomi, I.; O’Connor, E.; Kouznetsov, R.; Wrenger, B.; Rautenberg, A.; Urbancic, G.; Jonassen, M.O.; et al. Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISOBAR)—The Hailuoto 2017 Campaign. Atmosphere 2018, 9, 268. [Google Scholar] [CrossRef]
- Lu, S.-J.; Wang, D.; Li, X.-B.; Wang, Z.; Gao, Y.; Peng, Z.-R. Three-dimensional distribution of fine particulate matter concentrations and synchronous meteorological data measured by an unmanned aerial vehicle (UAV) in Yangtze River Delta, China. Atmos. Meas. Tech. Discuss. 2016. preprint. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of low-cost sensors for ambient PM2.5 monitoring. J. Sens. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Alaoui-Sosse, S.; Durand, P.; Medina, P.; Pastor, P.; Lothon, M.; Cernov, I. OVLI-TA: An Unmanned Aerial System for Measuring Profiles and Turbulence in the Atmospheric Boundary Layer. Sensors 2019, 19, 581. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzeniecka-Osiadacz, A.; Sawiński, T.; Korzystka-Muskała, M.; Kowalczyk, M.; Modzel, P. Usefulness of UAV-Mounted Multi-Sensors System for In Situ Atmospheric Measurement: A Case Study from Wrocław, Poland. Environ. Sci. Proc. 2022, 19, 49. https://doi.org/10.3390/ecas2022-12843
Drzeniecka-Osiadacz A, Sawiński T, Korzystka-Muskała M, Kowalczyk M, Modzel P. Usefulness of UAV-Mounted Multi-Sensors System for In Situ Atmospheric Measurement: A Case Study from Wrocław, Poland. Environmental Sciences Proceedings. 2022; 19(1):49. https://doi.org/10.3390/ecas2022-12843
Chicago/Turabian StyleDrzeniecka-Osiadacz, Anetta, Tymoteusz Sawiński, Magdalena Korzystka-Muskała, Marek Kowalczyk, and Piotr Modzel. 2022. "Usefulness of UAV-Mounted Multi-Sensors System for In Situ Atmospheric Measurement: A Case Study from Wrocław, Poland" Environmental Sciences Proceedings 19, no. 1: 49. https://doi.org/10.3390/ecas2022-12843
APA StyleDrzeniecka-Osiadacz, A., Sawiński, T., Korzystka-Muskała, M., Kowalczyk, M., & Modzel, P. (2022). Usefulness of UAV-Mounted Multi-Sensors System for In Situ Atmospheric Measurement: A Case Study from Wrocław, Poland. Environmental Sciences Proceedings, 19(1), 49. https://doi.org/10.3390/ecas2022-12843