Ecosystems: Climate Change Vulnerability and Resilience †
Abstract
:1. Introduction
2. Materials and Methods
- The scale of the biome map [6] (1:7.5 mln) is too small compared to the average PA size (around 300 thousand ha), leading to potential errors and uncertainties in the PA/biome connection, especially if a PA is close to biome boundaries;
- The map [6] also shows climatograms for each biome, which partially overlay the boundaries;
- Some PAs include offshore areas, whereas the biome map [6] depicts only terrestrial biomes (including water bodies, if any, within the biomes). Where this was the case, the offshore part was deducted from the PA area;
- In recent years, PA boundaries are being verified and the relevant information is entered into the national Land Register. Notably, the PA area might have somewhat changed, but the information on the website of the RF Ministry of natural resources or in the databases is updated with a delay.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 1300. [Google Scholar]
- Report on the Scientific and Methodology Basis for the Development of Climate Change Adaptation Strategies in the Russian Federation (within the Competence of Roshydromet). Available online: http://cc.voeikovmgo.ru/images/dokumenty/2020/dokladRGM.pdf (accessed on 1 May 2022).
- RF Service for Hydrometeorology and Environmental Monitoring (Roshydromet). 2021 Report on the Climate Patterns in the Territory of the Russian Federation; Roshydromet: Moscow, Russia, 2022; p. 104. [Google Scholar]
- Bogdanovich, A.Y.; Lipka, O.N.; Krylenko, M.V.; Andreeva, A.P.; Dobrolyubova, K.O. Climate threats in the Northwest of the Black Sea coast of the Caucasus: Modern trends. Fundam. Appl. Climatol. 2021, 7, 46–72. [Google Scholar]
- Novikova, E.P.; Grigoriev, G.N.; Vagurin, I.Y.; Chumeikina, A.S. Variations in the Chernozem Region hydrothermal regime over the recent 30 years against the background of global climate change. Reg. Geosyst. 2017, 39, 105–113. [Google Scholar]
- Faculty of Geography, Lomonosov Moscow State University, Russian Geographical Society. The Biomes of Russia; WWF-Russia: Moscow, Russia, 2018. [Google Scholar]
- Gutiérrez, J.M. IPCC WGI Interactive Atlas. Available online: http://interactive-atlas.ipcc.ch/ (accessed on 29 April 2022).
- Zhiltsova, E.L.; Anisimov, O.A. Evolution of vegetation in North Eurasia: Analysis of current observations and projection for the 21st century. Nat. Sci. 2015, 2, 48–59. [Google Scholar]
- Anisimov, O.; Kokorev, V.; Zhiltcova, Y. Arctic Ecosystems and their Services under Changing Climate: Predictive-Modeling Assessment. Geogr. Rev. 2017, 107, 108–124. [Google Scholar] [CrossRef]
- Parfenova, E.; Tchebakova, N.; Soja, A. Assessing landscape potential for human sustainability and ‘attractiveness’ across Asian Russia in a warmer 21st century. Environ. Res. Lett. 2019, 14, 065004. [Google Scholar] [CrossRef]
- Bartalev, S.A. Satellite-Assisted Mapping of Russia’s Vegetation Cover; Space Research Institute of the Russian Academy of Science: Moscow, Russia, 2016; p. 208. [Google Scholar]
- Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets. Available online: https://www.cbd.int/sp/ (accessed on 29 April 2022).
- Cliquet, A.; Backes, C.; Harris, J.; Howsam, P. Adaptation to climate change. Legal challenges for protected areas. Utrecht Law Rev. 2009, 5, 158–175. [Google Scholar] [CrossRef]
- Lipka, O.N.; Kokorin, A.O. Adaptation to climate change for biodiversity conservation. Use Prot. Nat. Resour. Russ. 2016, 1, 54–60. [Google Scholar]
- Sixth National Report “Biodiversity Conservation in the Russian Federation”. 2020. Available online: https://chm.cbd.int/database/record?documentID=253450 (accessed on 29 April 2022).
- Federal Law “On Protected Natural Territories” No. 33-FZ Dated 14.03.1995. Available online: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102034651 (accessed on 30 April 2022).
- Shishin, M.Y.; Engoyan, O.Z. Ecological framework as the basis for sustainable nature management in Altay Region. Polzunovsky Newsl. 2015, 3, 86–90. [Google Scholar]
- Rybak, E.A. Climate research in protected areas as an integral part of comprehensive monitoring. Proc. Smidovich Mordovian State Nat. Reserve 2021, 28, 216–221. [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Ogureeva, G.N. (Ed.) Russia’s Biomes. Plain Biomes; Yu. A. Izrael Institute of Global Climate and Ecology: Moscow, Russia, 2020; p. 623. [Google Scholar]
- Rosstat (RF Statistical Service). 2020 Data on Protected Areas. Available online: https://rosstat.gov.ru/folder/11194 (accessed on 29 April 2022).
- Arctic and Antarctic Institute. Research and Information System “Protected Natural Areas of Russia”. Available online: http://oopt.aari.ru/ (accessed on 30 April 2022).
- Russia’s Reserves and National Parks; Map. M. 1:14 000 000; Greenpeace Russia: Moscow, Russia, 2004.
- World Database on Protected Areas. Available online: https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas (accessed on 30 April 2022).
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; in press. [Google Scholar]
- Kattsov, V.M. Development of a methodology for probabilistic forecasting of regional climate in the territory of Russia to support the development of climate implications scenarios by sectors of economy. Part 1: Problem statement and simulation exercises. In Proceedings of the Voeikov Main Geophysical Observatory; Voeikov Main Geophysical Observatory: St. Petersburg, Russia, 2016; Volume 583, pp. 7–29. [Google Scholar]
- Kattsov, V.M. Development of a methodology for probabilistic forecasting of regional climate in the territory of Russia to support the development of climate implications scenarios by sectors of economy. Part 2: Estimations of climate implications. In Proceedings of the Voeikov Main Geophysical Observatory; Voeikov Main Geophysical Observatory: St. Petersburg, Russia, 2019; Volume 593, pp. 6–52. [Google Scholar]
- Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation. Available online: https://cc.voeikovmgo.ru/images/dokumenty/2016/od2/od2full.pdf (accessed on 30 April 2022).
- Climate Centre of the RF Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Report on Climate Threats in the Territory of the Russian Federation; Voeikov Main Geophysical Observatory (GGO): St. Petersburg, Russia, 2017; p. 106. [Google Scholar]
- Belonovskaya, E.A.; Tishkov, A.A.; Vaisfeld, M.A.; Glazov, P.M.; Krenke (junior), A.N.; Morozova, O.V.; Pokrovskaya, I.V.; Tsarevskaya, N.G.; Tertitskii, G.M. “Greening” of the Russian Arctic and the Modern Trends of Transformation of Its Biota. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2016, 28–39. (In Russian) [Google Scholar] [CrossRef]
- Rees, W.G.; Hofgaard, A.; Boudreau, S.; Cairns, D.M.; Harper, K.; Mamet, S.; Mathisen, I.; Swirad, Z.; Tutubalina, O. Is subarctic forest advance able to keep pace with climate change? Glob. Change Biol. 2020, 26, 3965–3977. [Google Scholar] [CrossRef] [PubMed]
- Mathisen, I.E.; Mikheeva, A.; Tutubalina, O.V.; Aune, S.; Hofgaard, A. Fifty years of tree line change in the Khibiny Mountains, Russia: Advantages of combined remote sensing and dendroecological approaches. Appl. Veg. Sci. 2014, 17, 6–16. [Google Scholar] [CrossRef]
- Gaisin, I.K.; Moiseev, P.A.; Makhmutova, I.I.; Nizametdinov, N.F.; Moiseeva, O.O. Expansion of Tree Vegetation in the Forest-Mountain Steppe Ecotone on the Southern Urals in Relation to Changes in Climate and Habitat Moisture. Russ. J. Ecol. 2020, 51, 306–318. [Google Scholar] [CrossRef]
- Grigor’ev, A.A.; Devi, N.M.; Kukarskikh, V.V.; V’yukhin, S.O.; Galimova, A.A.; Moiseev, P.A.; Fomin, V.V. Structure and Dynamics of Tree Stands at the Upper Timberline in the Western Part of the Putorana Plateau. Russ. J. Ecol. 2019, 50, 311–322. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L.; Ranson, K.J.; Petrov, I.A. Tree wave migration across an elevation gradient in the Altai Mountains, Siberia. J. Mt. Sci. 2017, 14, 442–452. [Google Scholar] [CrossRef]
- Gatti, R.C.; Callaghan, T.; Velichevskaya, A.; Dudko, A.; Fabbio, L.; Battipaglia, G.; Liang, J. Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Sci. Rep. 2019, 9, 7678. [Google Scholar] [CrossRef]
- Sergienko, V.G. Dynamics of the borders of forest growth zones in Russia under the conditions of climate change. Proc. St. Petersburg For. Res. Inst. 2015, 10, 5–19. [Google Scholar]
- Brazhnik, K.; Hanley, C.; Shugart, H.H. Simulating changes in fires and ecology of the 21st century Eurasian boreal forests of Siberia. Forests 2017, 8, 49. [Google Scholar] [CrossRef]
- Fedorov, N.I.; Martynenko, V.B.; Zhigunova, S.N.; Mikhailenko, O.I.; Shendel, G.V.; Naumova, L.G. Changes in the Distribution of Broadleaf Tree Species in the Central Part of the Southern Urals since the 1970s. Russ. J. Ecol. 2021, 52, 118–125. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Wommelsdorf, T.; Zhao, F.; Xue, Y.; Zhumadilov, B.Z.; Leuschner, C.; Hauck, M. Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of eastern Kazakhstan. Ecosystems 2013, 16, 1536–1549. [Google Scholar] [CrossRef]
- Barrett, K.; Baxter, R.; Kukavskaya, E.; Balzter, H.; Shvetsov, E.; Buryak, L. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 2020, 237, 111539. [Google Scholar] [CrossRef]
- Stishov, M.S. Methodology to Estimate the Effectiveness of Nature Protection Activities in Protected Areas and Regional Systems; WWF-Russia: Moscow, Russia, 2012; p. 284. [Google Scholar]
- Padalko, Y.A. Evaluation and ranking of protected areas of federal significance according to the key morphometric parameters of the relief using a digital relief model. Newsl. Orenbg. Sci. Cent. Ural Branch Russ. Acad. Sci. 2015, 2, 1–11. [Google Scholar]
Period | European Russia | West Siberia | East Siberia | Far East | Russian Federation |
---|---|---|---|---|---|
2016–2045 | 58 | 64 | 55 | 48 | 56 |
2031–2060 | 71 | 74 | 70 | 57 | 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipka, O.N.; Shishkina, T.B. Ecosystems: Climate Change Vulnerability and Resilience. Environ. Sci. Proc. 2022, 19, 58. https://doi.org/10.3390/ecas2022-12836
Lipka ON, Shishkina TB. Ecosystems: Climate Change Vulnerability and Resilience. Environmental Sciences Proceedings. 2022; 19(1):58. https://doi.org/10.3390/ecas2022-12836
Chicago/Turabian StyleLipka, Oksana N., and Tatiana B. Shishkina. 2022. "Ecosystems: Climate Change Vulnerability and Resilience" Environmental Sciences Proceedings 19, no. 1: 58. https://doi.org/10.3390/ecas2022-12836
APA StyleLipka, O. N., & Shishkina, T. B. (2022). Ecosystems: Climate Change Vulnerability and Resilience. Environmental Sciences Proceedings, 19(1), 58. https://doi.org/10.3390/ecas2022-12836