Selenite Removal from Water †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Characteristics
2.2. Reagents and Adsorbents
2.3. Coagulation Tests
2.4. Adsorption Tests
2.5. Analytical Procedure
3. Results and Discussion
3.1. Coagulation Tests
3.2. Adsorption Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tan, L.C.; Nancharaiah, Y.V.; van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016, 34, 886–907. [Google Scholar] [CrossRef]
- He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018, 164, 288–301. [Google Scholar] [CrossRef]
- Suganya, S.; Kumar, P.S. An investigation of adsorption parameters on ZVI-AC nanocomposite in the displacement of Se(IV) ions through CCD analysis. J. Ind. Eng. Chem. 2019, 75, 211–223. [Google Scholar]
- Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Sci. Total Environ. 2015, 521, 246–260. [Google Scholar] [CrossRef]
- Etteieb, S.; Magdouli, S.; Zolfaghari, M.; Brar, S.K. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2019, 698, 134339. [Google Scholar] [CrossRef]
- Directive, C. The Council of the European Union Council Directive 98/93/EC of November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 330, 32–54. [Google Scholar]
- Pettine, M.; McDonald, T.J.; Sohn, M.; Anquandah, G.A.K.; Zboril, R.; Sharma, V.K. A critical review of selenium analysis in natural water samples. Trends Environ. Anal. Chem. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Dong, H.; Luo, X.; Guan, X.; Zhang, X.; Xia, X. Selenite removal from groundwater by zero-valent iron (ZVI) in combination with oxidants. Chem. Eng. J. 2018, 345, 432–440. [Google Scholar] [CrossRef]
- Geoffroy, N.; Demopoulos, G.P. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide. J. Hazard. Mater. 2011, 185, 148–154. [Google Scholar] [CrossRef]
- Geoffroy, N.; Demopoulos, G.P. Reductive precipitation of elemental selenium from selenious acidic solutions using sodium dithionite. Ind. Eng. Chem. Res. 2009, 48, 10240–10246. [Google Scholar] [CrossRef]
- Tokunaga, K.; Takahashi, Y. Effective Removal of Selenite and Selenate Ions from Aqueous Solution by Barite. Environ. Sci. Technol. 2017, 51, 9194–9201. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Q.; Chen, G.; Liu, H.; Qu, J. Removal of Se(IV) and Se(VI) from drinking water by coagulation. Sep. Purif. Technol. 2015, 142, 65–70. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Nikoletopoulos, A.A.; Tsiftsakis, N.; Pinakidou, F.; Mitrakas, M. Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: Effect of positive surface charge density. Sci. Total Environ. 2019, 687, 1197–1206. [Google Scholar] [CrossRef]
- Jacobson, A.T.; Fan, M. Evaluation of natural goethite on the removal of arsenate and selenite from water. J. Environ. Sci. (China) 2019, 76, 133–141. [Google Scholar] [CrossRef]
- Moore, R.C.; Rigali, M.J.; Brady, P. Selenite sorption by carbonate substituted apatite. Environ. Pollut. 2016, 218, 1102–1107. [Google Scholar] [CrossRef]
- Constantino, L.V.; Quirino, J.N.; Monteiro, A.M.; Abrão, T.; Parreira, P.S.; Urbano, A.; Santos, M.J. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere 2017, 181, 627–634. [Google Scholar] [CrossRef]
- Zhang, N.; Gang, D.D.; McDonald, L.; Lin, L.S. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms. Chemosphere 2018, 195, 166–174. [Google Scholar] [CrossRef]
- Xiao, W.; Yan, B.; Zeng, H.; Liu, Q. Dendrimer functionalized graphene oxide for selenium removal. Carbon 2016, 105, 655–664. [Google Scholar] [CrossRef]
- Jia, D.; Yang, Z.; Zhang, H.; Liu, F.; Shen, Q. High performance of selenium cathode by encapsulating selenium into the micropores of chitosan-derived porous carbon framework. J. Alloys Compd. 2018, 746, 27–35. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Khaleque, M.A. Efficient selenium(IV) detection and removal from water by tailor-made novel conjugate adsorbent. Sensors Actuators B Chem. 2015, 209, 194–202. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Ihara, M.; Yaita, T. Mesoporous silica based novel conjugate adsorbent for efficient selenium (IV) detection and removal from water. Microporous Mesoporous Mater. 2014, 197, 331–338. [Google Scholar] [CrossRef]
- Nishimura, T.; Hashimoto, H.; Nakayama, M. Removal of selenium (VI) from aqueous solution with polyamine-type weakly basic ion exchange resin. Sep. Sci. Technol. 2007, 42, 3155–3167. [Google Scholar] [CrossRef]
- Malhotra, M.; Pal, M.; Pal, P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking Water. J. Water Process Eng. 2020, 33, 101007. [Google Scholar] [CrossRef]
- Cantafio, A.W.; Hagen, K.D.; Lewis, G.E.; Bledsoe, T.L.; Nunan, K.M.; Macy, J.M. Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis. Appl. Environ. Microbiol. 1996, 62, 3298–3303. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Bañuelos, G.S. Selenium in Plants; Overview and Prospects of Selenium Phytoremediation Approaches; Springer: Cham, Switzerland, 2017; Volume 11, pp. 277–321. [Google Scholar]
- Tresintsi, S.; Simeonidis, K.; Vourlias, G.; Stavropoulos, G.; Mitrakas, M. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(II) oxidation-precipitation parameters. Water Res. 2012, 46, 5255–5267. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Bakouros, L.; Mitrakas, M. Techno-economic evaluation of iron and aluminum coagulants on Se(IV) removal. Water 2020, 12, 672. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 7.4 ± 0.1 |
Conductivity (μS/cm) | 590 ± 30 |
Na+ (mg/L) | 35 ± 5 |
Ca2+ (mg/L) | 80 ± 10 |
Fe (mg/L) | <0.02 |
Mg2+ (mg/L) | 24 ± 3 |
HCO3− (mg/L) | 342 ± 20 |
ΝO3− (mg/L) | 9 ± 3 |
SO42− (mg/L) | 10 ± 4 |
Cl− (mg/L) | 15 ± 5 |
Mn (mg/L) | <0.005 |
TOC (mg/L) | 0.5 ± 0.2 |
Synthesis Parameters | Fe, wt. % | Surface Area, m2/g | IEP 1 | ZPC 2 | PSCD 3 mmol [OH−]/g | ||
---|---|---|---|---|---|---|---|
Materials | pH | ORP (mV) | |||||
FeSO4/H2O2 | 2.5 | 600 | 44.8 | 48 | 6.9 | 2.7 | 3.25 |
Parameter | FeOOH/2.5 |
---|---|
EBCT small scale, min | 4.3 |
Equivalent EBCT of large scale, min | 6.5 |
Hydraulic loading rate, m/h | 1.2 |
Media height (L), cm | 23.6 |
Particle size range, mm | 0.25–0.5 |
Geometric mean of particles (dp), mm | 0.35 |
L/dp | 67.4 |
Column media diameter (D), cm | 1.1 |
D/dp | 31 |
Column cross sectional area, cm2 | 0.95 |
Media mass, g | 12.2 |
Bed volume, mL | 22.4 |
Bed Volume per hour | 22.3 |
Flow rate, L/h | 0.31 |
Backwash flowrate, L/h | 0.8 |
Re∙Sc | ~2000 |
pH | 7 |
Temperature °C | 20 ± 1 |
Coagulant | pH | A | b | d | R2 | Q10 μg Se(IV)/mg Fe | Reagent Cost, EUR/kg Se(IV) |
---|---|---|---|---|---|---|---|
Fe3+-FeClSO4 | 7 | 0.2598 | −0.0174 | −0.0002 | 0.987 | 3.2 | 469 ± 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaitzidou, K.; Nikoletopoulos, A.; Bakouros, L.; Zouboulis, A.; Mitrakas, M. Selenite Removal from Water. Environ. Sci. Proc. 2020, 2, 23. https://doi.org/10.3390/environsciproc2020002023
Kalaitzidou K, Nikoletopoulos A, Bakouros L, Zouboulis A, Mitrakas M. Selenite Removal from Water. Environmental Sciences Proceedings. 2020; 2(1):23. https://doi.org/10.3390/environsciproc2020002023
Chicago/Turabian StyleKalaitzidou, Kyriaki, Andreas‐Arsenios Nikoletopoulos, Loukas Bakouros, Anastasios Zouboulis, and Manassis Mitrakas. 2020. "Selenite Removal from Water" Environmental Sciences Proceedings 2, no. 1: 23. https://doi.org/10.3390/environsciproc2020002023
APA StyleKalaitzidou, K., Nikoletopoulos, A., Bakouros, L., Zouboulis, A., & Mitrakas, M. (2020). Selenite Removal from Water. Environmental Sciences Proceedings, 2(1), 23. https://doi.org/10.3390/environsciproc2020002023