Data-Driven Approaches for Quantitative and Qualitative Control of Urban Drainage Systems (Preliminary Results) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. NARX Model Architectures
- A series-parallel architecture (Figure 3a), where the network uses the actual precedent target values, which are measured values; the system tries to use them [ymeas(t − 1),…, ymeas(t − fd)], together with the input sequence [x(t − 1),…, x(t − id)] in calculating the output at the next time step [y(t)]. Such architecture is effective for forecasting one time step ahead in a time series;
- A parallel architecture (Figure 3b) is based on using the sequence of the values calculated in previous time steps of the neural network [y(t − 1),…, y(t − fd)] instead of the real measured target values [ymeas(t − 1),…, ymeas(t − fd)]; in fact, estimated outputs are fed back and included in the output’s regressor in calculating the output for the next time step [y(t)]. The parallel architecture of this network is used for predicting the output values for multiple time steps ahead.
2.3. Data Processing
2.3.1. Time Series Preprocessing: Management of Missing Values
2.3.2. Rain Events and ADP Identifying
3. Results and Discussion
- Normalized Mean Square Error, NMSE (Equation (2)), where is the mean of measured target values;
- Correlation Coefficient, R (Equation (3)).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Antecedent Dry Period |
AI | Artificial intelligence |
ANN | Artificial Neural Network |
BMPs | Best Management Practices |
CN | Curve Number |
COD | Chemical Oxygen Demand |
CSOs | Combined Sewer Overflows |
FNUs | Formazin Nephelometric Units |
LID | Low Impact Development |
LSTM | Long Short-Term Memory |
MIT | Minimum Inter-event Time |
ML | Machine Learning |
MLRA | Multiple Linear Regressions Analysis |
NARX | Nonlinear AutoRegressive models with eXogenous Inputs |
NMSE | Normalized Mean Square Error |
NSQD | National Stormwater Quality Database |
R | Correlation Coefficient |
RNN | Recurrent Neural Network |
RTC | Real Time Control |
SUDSs | Sustainable Urban Drainage Systems |
TP | Total Phosphorus |
TSS | Total Suspended Solids |
USGS | United States Geological Survey |
WWTP | Waste Water Treatment Plant |
References
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. A Bayesian approach to model the trends and variability in urban stormwater quality associated with catchment and hydrologic parameters. Water Res. 2021, 197, 117076. [Google Scholar] [CrossRef] [PubMed]
- Chanklan, R.; Kaoungku, N.; Suksut, K.; Kerdprasop, K.; Kerdprasop, N. Runoff prediction with a combined artificial neural network and support vector regression. Int. J. Mach. Learn. Comput. 2018, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Granata, F.; Gargano, R.; de Marinis, G. Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with the EPA’s Storm Water Management Model. Water 2016, 8, 69. [Google Scholar] [CrossRef]
- Granata, F.; Saroli, M.; de Marinis, G.; Gargano, R. Machine learning models for spring discharge forecasting. Geofluids 2018, 2018, 8328167. [Google Scholar] [CrossRef] [Green Version]
- di Nunno, F.; Race, M.; Granata, F. A nonlinear autoregressive exogenous (NARX) model to predict nitrate concentration in rivers. Environ. Sci. Pollut. Res. 2021, 29, 40623–40642. [Google Scholar] [CrossRef]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Moeini, M.; Shojaeizadeh, A.; Geza, M. Supervised Machine Learning for Estimation of Total Suspended Solids in Urban Watersheds. Water 2021, 13, 147. [Google Scholar] [CrossRef]
- Alias, R.; Asmaliza, N.; Noor, M.; Sidek, L.M.; Kasa, A. Prediction of Water Quality for Free Water Surface Constructed Wetland Using ANN and MLRA. Civ. Eng. Archit. 2021, 9, 1365–1375. [Google Scholar] [CrossRef]
- Zhang, D.; Martinez, N.; Lindholm, G.; Ratnaweera, H. Manage Sewer In-Line Storage Control Using Hydraulic Model and Recurrent Neural Network. Water Resour. Manag. 2018, 32, 2079–2098. [Google Scholar] [CrossRef]
- el Ghazouli, K.; el Khatabi, J.; Soulhi, A.; Shahrour, I. Model predictive control based on artificial intelligence and EPA-SWMM model to reduce CSOs impacts in sewer systems. Water Sci. Technol. 2022, 85, 398–408. [Google Scholar] [CrossRef]
- di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmos 2021, 12, 512. [Google Scholar] [CrossRef]
- Hannouche, A.; Chebbo, G.; Ruban, G.; Tassin, B.; Lemaire, B.J.; Joannis, C. Relationship between turbidity and total suspended solids concentration within a combined sewer system. Water Sci. Technol. 2011, 64, 2445–2452. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, L.; Bian, W.; Zhou, B.; Liang, D.; Li, J. Turbidity in Combined Sewer Sewage: An Identification of Stormwater Detention Tanks. Int. J. Environ. Res. Public Health 2020, 17, 3053. [Google Scholar] [CrossRef]
- Abou Rjeily, Y.; Abbas, O.; Sadek, M.; Shahrour, I.; Hage Chehade, F. Flood forecasting within urban drainage systems using NARX neural network. Water Sci. Technol. 2017, 76, 2401–2412. [Google Scholar] [CrossRef] [PubMed]
- Menezes, J.M.P.; Barreto, G.A. Long-term time series prediction with the NARX network: An empirical evaluation. Neurocomputing 2008, 71, 3335–3343. [Google Scholar] [CrossRef]
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME—The Konstanz information miner. ACM SIGKDD Explor. Newsl. 2009, 11, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Pynam, V.; Spanadna, R.R.; Srikanth, K. An Extensive Study of Data Analysis Tools (Rapid Miner, Weka, R Tool, Knime, Orange). SSRG Int. J. Comput. Sci. Eng. 2018, 5, 4–11. [Google Scholar] [CrossRef]
- Brasil, J.B.; Guerreiro, M.S.; de Andrade, E.M.; Palácio, H.A.d.; Medeiros, P.H.A.; Filho, J.C.R. Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment. Sustainability 2022, 14, 1721. [Google Scholar] [CrossRef]
- Restrepo-Posada, P.J.; Eagleson, P.S. Identification of independent rainstorms. J. Hydrol. 1982, 55, 303–319. [Google Scholar] [CrossRef]
- Pampaloni, M.; Sordo-Ward, A.; Bianucci, P.; Gabriel-Martin, I.; Caporali, E.; Garrote, L. A Stochastic Procedure for Temporal Disaggregation of Daily Rainfall Data in SuDS Design. Water 2021, 13, 403. [Google Scholar] [CrossRef]
- Alley, W.M.; Smith, P.E. Estimation of accumulation parameters for urban runoff quality modeling. Water Resour. Res. 1981, 17, 1657–1664. [Google Scholar] [CrossRef]
- Papiri, S.; Todeschini, S.; Valcher, P. Pollution in Stormwater Runoff in a Highway Toll Gate Area. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
USGS Site | Lat/Long NAD83 | Drainage Area (ha) | Hydrologic Unit | Code/Parameter | Begin Date (dd-mm-yyyy) | End Date (dd-mm-yyyy) |
---|---|---|---|---|---|---|
LUDLOW DRIVE (0204306533) | 36°47′28.35″ N/76°07′52.81″ W | 72.3 | 03010205 | 00010/Temperature | 19-11-2015 | 13-02-2022 (*) |
00060/Discharge | 26-04-2016 | 13-02-2022 (*) | ||||
00065/Gage height | 26-04-2016 | 13-02-2022 (*) | ||||
00095/Specific cond | 19-11-2015 | 13-02-2022 (*) | ||||
63680/Turbidity | 19-11-2015 | 13-02-2022 (*) | ||||
THALIA CREEK (0204291317) | 36°50′35.9″ N/76°07′28.1″ W | - | 02080108 | 00045/Precipitation | 22-04-2016 | 13-02-2022 (*) |
SET No. | INPUT PARAMETERS | NMSE (Training) | R (Training) | NMSE (Testing) | R (Testing) |
---|---|---|---|---|---|
1 | ADP | 0.426 | 0.757 | 0.375 | 0.791 |
2 | GageH | 0.418 | 0.763 | 0.349 | 0.807 |
3 | GageH, ADP | 0.417 | 0.763 | 0.359 | 0.801 |
4 | GageH, ADP, Prec | 0.429 | 0.756 | 0.364 | 0.797 |
5 | Flow | 0.424 | 0.759 | 0.356 | 0.803 |
6 | Flow, ADP | 0.428 | 0.756 | 0.365 | 0.797 |
7 | Flow, ADP, Prec | 0.419 | 0.762 | 0.356 | 0.803 |
8 | GageH, ADP, Prec, Temp, CondSp | 0.399 | 0.775 | 0.354 | 0.803 |
9 | Flow, ADP, Prec, Temp, CondSp | 0.408 | 0.769 | 0.354 | 0.803 |
10 | GageH, Flow, ADP, Prec, Temp, CondSp | 0.399 | 0.775 | 0.362 | 0.799 |
11 | CondSp | 0.418 | 0.763 | 0.354 | 0.804 |
12 | CondSp, Prec | 0.405 | 0.771 | 0.336 | 0.815 |
13 | CondSp, Prec, ADP | 0.397 | 0.776 | 0.349 | 0.807 |
14 | CondSp, Prec, ADP, Temp | 0.404 | 0.772 | 0.355 | 0.803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriele, A.; Di Nunno, F.; Granata, F.; Gargano, R. Data-Driven Approaches for Quantitative and Qualitative Control of Urban Drainage Systems (Preliminary Results). Environ. Sci. Proc. 2022, 21, 67. https://doi.org/10.3390/environsciproc2022021067
Gabriele A, Di Nunno F, Granata F, Gargano R. Data-Driven Approaches for Quantitative and Qualitative Control of Urban Drainage Systems (Preliminary Results). Environmental Sciences Proceedings. 2022; 21(1):67. https://doi.org/10.3390/environsciproc2022021067
Chicago/Turabian StyleGabriele, Annalaura, Fabio Di Nunno, Francesco Granata, and Rudy Gargano. 2022. "Data-Driven Approaches for Quantitative and Qualitative Control of Urban Drainage Systems (Preliminary Results)" Environmental Sciences Proceedings 21, no. 1: 67. https://doi.org/10.3390/environsciproc2022021067
APA StyleGabriele, A., Di Nunno, F., Granata, F., & Gargano, R. (2022). Data-Driven Approaches for Quantitative and Qualitative Control of Urban Drainage Systems (Preliminary Results). Environmental Sciences Proceedings, 21(1), 67. https://doi.org/10.3390/environsciproc2022021067