The Theoretical Probability Distribution of Peak Outflows of Small Detention Dams †
Abstract
:1. Introduction
2. The Theoretically Derived Probability Distribution of Peak Outflows of a Dam
3. Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notations
α (-) | Scale parameter of the GEV distribution |
β (-) | Location parameter of the GEV distribution |
ξ (-) | Shape parameter of the GEV distribution |
μf (-) | Coefficient of discharge of the submerged low-level opening |
μs (-) | Coefficient of discharge of the crest spillway |
b (m) | Width of the low-level opening rectangular section |
d (m) | Height of the low-level opening |
h (m) | Variable water level within the detention basin |
hs (m) | Height of the spillway crest |
hf (m) | Height of the barycenter of the low-level opening |
keq (s) | Equivalent delay constant of the conceptual reservoir associated with the outflow |
L (m) | Effected crest length |
n (-) | Exponent of the stage-storage capacity curve |
n' (-) | Exponent of the rainfall intensity duration function |
p(Q) (-) | Probability density function of outflows |
Qc (m3/s) | Design outflow from the low-level opening |
Qp,out (m3/s) | Peak outflow from the detention basin |
Qmax (m3/s) | Peak flow incoming in the detention basin |
tp (s) | Equivalent flood duration |
tr (s) | Basin lag time |
Wmax (m3) | Water storage capacity at the crest level |
w1 (m3−n) | Parameter of the stage-storage capacity curve |
References
- Di Baldassarre, G.; Montanari, A.; Lins, H.; Koutsoyiannis, D.; Brandimarte, L.; Bloeschl, G. Flood fatalities in Africa: From diagnosis to mitigation. Geophys. Res. Lett. 2010, 37, L22402. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Aerts, J.C.J.H.; van Beek, L.P.H.; Bierkens, M.F.P.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.J.; Ligtvoet, W.; Lucas, P.L.; van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2015, 6, 381–385. [Google Scholar] [CrossRef]
- Jacob, A.C.P.; Rezende, O.M.; de Sousa, M.M.; de França Ribeiro, L.B.; de Oliveira, A.K.B.; Arrais, C.M.; Miguez, M.G. Use of detention basin for flood mitigation and urban requalification in Mesquita, Brazil. Water Sci. Technol. 2019, 79, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Seibert, S.P.; Skublics, D.; Ehret, U. The potential of coordinated reservoir operation for flood mitigation in large basins–A case study on the Bavarian Danube using coupled hydrological–hydrodynamic models. J. Hydrol. 2014, 517, 1128–1144. [Google Scholar] [CrossRef]
- Cipollini, S.; Fiori, A.; Volpi, E. A New Physically Based Index to Quantify the Impact of Multiple Reservoirs on Flood Frequency at the Catchment Scale Based on the Concept of Equivalent Reservoir. Water Resour Res. 2022, 58, e2021WR031470. [Google Scholar] [CrossRef]
- Manfreda, S.; Miglino, D.; Albertini, C. Impact of detention dams on the probability distribution of floods. Hydrol. Earth Syst. Sci. 2021, 25, 4231–4424. [Google Scholar] [CrossRef]
- Manfreda, S.; Link, O.; Pizarro, A. The Theoretically Derived Probability Distribution of Scour. Water 2018, 10, 1520. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G. On the derived flood frequency distribution: Analytical formulation and the influence of antecedent soil moisture condition. J. Hydrol. 2002, 262, 245–258. [Google Scholar] [CrossRef]
- Eagleson, P.S. Dynamics of flood frequency. Water Resour Res. 1972, 8, 878–898. [Google Scholar] [CrossRef]
- Gioia, A.; Iacobellis, V.; Manfreda, S.; Fiorentino, M. Runoff thresholds in derived flood frequency distributions. Hydrol. Earth Syst. Sci. 2008, 12, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; Fiorentino, M. A Stochastic Approach for the Description of the Water Balance Dynamics in a River Basin. Hydrol. Earth Syst. Sci. 2008, 12, 1189–1200. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Benjamin, J.R.; Cornell, C.A. Probability, Statistics, and Decision for Civil Engineers; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Fiorentino, M. La valutazione dei volumi dei volumi di piena nelle reti di drenaggio urbano. Idrotecnica 1985, 3, 141–152. [Google Scholar]
- Albertini, C.; Miglino, D.; Bove, G.; De Falco, M.; De Paola, F.; Dinuzzi, A.M.; Petroselli, A.; Pugliese, F.; Samela, C.; Santo, A.; et al. Integration of a Probabilistic and a Geomorphic Method for the Optimization of Flood Detention Basins Design. Environ. Sci. Proc. 2022, 21, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfreda, S.; Miglino, D.; Albertini, C. The Theoretical Probability Distribution of Peak Outflows of Small Detention Dams. Environ. Sci. Proc. 2022, 21, 90. https://doi.org/10.3390/environsciproc2022021090
Manfreda S, Miglino D, Albertini C. The Theoretical Probability Distribution of Peak Outflows of Small Detention Dams. Environmental Sciences Proceedings. 2022; 21(1):90. https://doi.org/10.3390/environsciproc2022021090
Chicago/Turabian StyleManfreda, Salvatore, Domenico Miglino, and Cinzia Albertini. 2022. "The Theoretical Probability Distribution of Peak Outflows of Small Detention Dams" Environmental Sciences Proceedings 21, no. 1: 90. https://doi.org/10.3390/environsciproc2022021090
APA StyleManfreda, S., Miglino, D., & Albertini, C. (2022). The Theoretical Probability Distribution of Peak Outflows of Small Detention Dams. Environmental Sciences Proceedings, 21(1), 90. https://doi.org/10.3390/environsciproc2022021090