Rainfall Interception Variations According to Eucalyptus Genotypes †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreto, D.O.C.; Reichert, J.M.; Cavalcante, R.B.L.; Srinivasan, R. Rainfall partitioning in young clonal plantations Eucalyptus species in a subtropical environment, and implications for water and forest management. Int. Soil Water Conserv. Res. 2021, 9, 474–484. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Zhao, Y.; Li, X.-R.; Huang, L.; Tan, H.-J. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: A 10-year observation in the Tengger Desert. Sci. Rep. 2016, 6, 26030. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.F.; Reichert, J.M.; Minella, J.P.G.; Dalbianco, L.; Ludwig, R.L.; Ramon, R.; Rodrigues, L.A.; Júnior, N.B. Hydrosedimentology of nested subtropical watersheds with native and eucalyptus forests. J. Soils Sediments 2014, 14, 1311–1324. [Google Scholar] [CrossRef]
- Cavalli, J.P.; Reichert, J.M.; Rodrigues, M.F.; de Araújo, E.F. Composition and functional soil properties of arenosols and acrisols: Effects on eucalyptus growth and productivity. Soil Tillage Res. 2020, 196, 104439. [Google Scholar] [CrossRef]
- Dick, G.; Schumacher, M.V.; Momolli, D.R.; Viera, M. Nutrient Input via Incident Rainfall in a Eucalyptus dunnii Stand in the Pampa biome. Floresta Ambient. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Calder, I.R.; Hall, R.L.; Prasanna, K. Hydrological impact of Eucalyptus plantation in India. J. Hydrol. 1993, 150, 635–648. [Google Scholar] [CrossRef]
- Malvar, M.C.; Prats, S.A.; Keizer, J.J. Runoff and Inter-Rill Erosion Affected by Wildfire and Pre-Fire Ploughing in Eucalypt Plantations of North-Central Portugal. Land Degrad. Dev. 2016, 27, 1366–1378. [Google Scholar] [CrossRef]
- Smethurst, P.J.; Valadares, R.V.; Huth, N.I.; Almeida, A.C.; Elli, E.F.; Neves, J.C. Generalized model for plantation production of Eucalyptus grandis and hybrids for genotype-site-management applications. For. Ecol. Manag. 2020, 469, 118164. [Google Scholar] [CrossRef]
- Hakamada, R.; Hubbard, R.M.; Stape, J.L.; Lima, W.D.P.; Moreira, G.G.; Ferraz, S. Stocking effects on seasonal tree transpiration and ecosystem water balance in a fast-growing Eucalyptus plantation in Brazil. For. Ecol. Manag. 2020, 466, 118149. [Google Scholar] [CrossRef]
- CIREN. Estudio Agrológico VIII Región. Descripciones de Suelos, Materiales y Símbolos; Centro de Información de Recursos Naturales CIREN: Santiago, Chile, 1999. [Google Scholar]
- Iida, S.; Levia, D.F.; Nanko, K.; Sun, X.; Shimizu, T.; Tamai, K.; Shinohara, Y. Correction of Canopy Interception Loss Measurements in Temperate Forests: A Comparison of Necessary Adjustments among Three Different Rain Gauges Based on a Dynamic Calibration Procedure. J. Hydrometeorol. 2018, 19, 547–553. [Google Scholar] [CrossRef]
- Balieiro, F.D.C.; Franco, A.A.; Fontes, R.L.F.; Dias, L.E.; Campello, E.F.C.; Faria, S.M.D. Evaluation of the throughfall and stemflow nutrient contents in mixed and pure plantations of Acacia mangium, Pseudosamenea guachapele and Eucalyptus grandis. Rev. Árvore 2007, 31, 339–346. [Google Scholar] [CrossRef]
- Sari, V.; Paiva, E.M.C.D.D.; Paiva, J.B.D.D. Interceptação da chuva em diferentes formações florestais na região sul do Brasil. RBRH 2016, 21, 65–79. [Google Scholar] [CrossRef]
- Câmara, A.P.; Vidaurre, G.B.; Oliveira, J.C.L.; Teodoro, P.E.; Almeida, M.N.F.; Toledo, J.V.; Júnior, A.F.D.; Amorim, G.A.; Pezzopane, J.E.M.; Campoe, O.C. Changes in rainfall patterns enhance the interrelationships between climate and wood traits of eucalyptus. For. Ecol. Manag. 2021, 485, 118959. [Google Scholar] [CrossRef]
- Ferreto, D.O.C.; Reichert, J.M.; Cavalcante, R.B.L.; Srinivasan, R. Water budget fluxes in catchments under grassland and Eucalyptus plantations of different ages. Can. J. For. Res. 2021, 51, 513–523. [Google Scholar] [CrossRef]
Parameter | Group | Genotype | Equation | R2-Adj | RMSE |
---|---|---|---|---|---|
Sf | General | All | Sf = 0.12 P + 0.01 | 0.98 | 1.29 |
Tf | By LAI | Es & Eb (High) | Tf = 0.43 P − 0.07 | 0.96 | 1.55 |
EngH, EgH & Ecg (Intermediate) | Tf = 0.62 P − 0.12 | 0.95 | 1.30 | ||
EngL, EgL & En (Low) | Tf = 0.87 P − 0.09 | 0.97 | 1.24 | ||
INT | By LAI | Es & Eb (High) | INT = 0.56 P − 0.09 | 0.96 | 1.67 |
EngH, EgH & Ecg (Intermediate) | INT = 0.36 P − 0.02 | 0.89 | 1.89 | ||
EngL, EgL & En (Low) | INT = 0.11 P − 0.10 | 0.80 | 1.90 | ||
INT ratio | By LAI | Es & Eb (High) | INT ratio = −13.78 Ln (P) + 121.51 | 0.70 | 1.44 |
EngH, EgH & Ecg (Intermediate) | INT ratio = −20.71 Ln (P) + 139.09 | 0.77 | 1.22 | ||
EngL, EgL & En (Low) | INT ratio = −30.12 Ln (P) + 156.78 | 0.73 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde, J.C.; Rubilar, R.; Medina, A.; Mardones, O.; Emhart, V.; Bozo, D.; Espinoza, Y.; Campoe, O. Rainfall Interception Variations According to Eucalyptus Genotypes. Environ. Sci. Proc. 2022, 22, 45. https://doi.org/10.3390/IECF2022-13334
Valverde JC, Rubilar R, Medina A, Mardones O, Emhart V, Bozo D, Espinoza Y, Campoe O. Rainfall Interception Variations According to Eucalyptus Genotypes. Environmental Sciences Proceedings. 2022; 22(1):45. https://doi.org/10.3390/IECF2022-13334
Chicago/Turabian StyleValverde, Juan Carlos, Rafael Rubilar, Alex Medina, Oscar Mardones, Verónica Emhart, Daniel Bozo, Yosselin Espinoza, and Octavio Campoe. 2022. "Rainfall Interception Variations According to Eucalyptus Genotypes" Environmental Sciences Proceedings 22, no. 1: 45. https://doi.org/10.3390/IECF2022-13334
APA StyleValverde, J. C., Rubilar, R., Medina, A., Mardones, O., Emhart, V., Bozo, D., Espinoza, Y., & Campoe, O. (2022). Rainfall Interception Variations According to Eucalyptus Genotypes. Environmental Sciences Proceedings, 22(1), 45. https://doi.org/10.3390/IECF2022-13334